

MALAYSIAN PUBLIC SECTOR
OPEN SOURCE SOFTWARE (OSS)

INITIATIVE

The Malaysian Government Interoperability Framework for Open Source Software
(MyGIFOSS)

COPYRIGHT

n 	 The Copyright to this document is owned by the Government of Malaysia.

TABLE OF CONTENTS

1 	INTRODUCTION	 1

	 1.1 	Definition	 	 1

	 1.2 	Objectives	 	 2

	 1.3 	Basis Of Recommendations	 2

	 1.4 	Scope 	 	 2

	 1.5 	How To Use This Document	 3

PART A

2 OPEN SOURCE SOFTWARE WITHIN DEFINED IMPLEMENTATION AREAS	 7

	 2.1 	Overview	 	 7

	 2.2 	Guidelines/Standards Matrix	 8

	 2.3 	Operating Systems	 13

		 2.3.1 LINUX	 13

		 2.3.2 BSD	 15

	 2.4 	Desktop Applications	 17

		 2.4.1 	 Office Productivity Suite	 17

		 2.4.2 	 Project Management	 17

		 2.4.3 	 Mail Client	 18

		 2.4.4 	 Web Browser	 18

		 2.4.5 	 Multimedia Player	 19

		 2.4.6 	 Desktop Environment	 20

		 2.4.7 	 Graphic Manipulation	 21

		 2.4.8 	 Education Software	 21

	 2.5 	Server Applications	 22

		 2.5.1 	 Mail Transfer Agent (MTA)	 22

		 2.5.2 	 Mail Access Agent	 23

		 2.5.3 	 Groupware	 23

		 2.5.4 	 Web Server	 23

		 2.5.5 	 Remote Login Server	 24

		 2.5.6 	 Database Server	 25

vi

		 2.5.7 	 Proxy Server	 25

		 2.5.8 	 Files & Print Server	 26

		 2.5.9 	 Backup Server/Tool	 27

	 2.6 	Network Security	 28

		 2.6.1 Firewall	 28

		 2.6.2 Network Intrusion Detection System (IDS)	 29

		 2.6.3 Virtual Private Network (VPN)	 30

		 2.6.4 Anti-virus	 30

		 2.6.5 Anti-spam	 31

3 RECOMMENDATIONS FOR INFORMATION ACCESS	 32

	 3.1 	Overview	 	 32

	 3.2 	Recommended Standards / Specifications	 32

		 3.2.1 	 Hypertext Web Content	 32

		 3.2.2 	 Document	 32

		 3.2.3 	 Spreadsheet	 33

		 3.2.4 	 Presentation	 34

		 3.2.5 	 Graphical Image	 34

		 3.2.6 	 Moving Image And Audio / Visual Content	 36

		 3.2.7 	 Audio / Video Streaming	 36

		 3.2.8 	 Animation	 37

		 3.2.9 	 Mobile Devices Content	 37

		 3.2.10 	 Character Sets And Encoding	 37

		 3.2.11 	 Compression	 38

		 3.2.12 	 Client-Side Scripting 	 39

PART B

4 IMPLEMENTATION GUIDELINES: MANAGEMENT PERSPECTIVE	 43

	 4.1 Key Success Factors	 43

	 4.2 Challenges	 	 44

	 4.3 Project Management Of An OSS Implementation 	 45

vii

	 4.4 Notes For Migration	 46

	 4.5 Common Change Management Issues	 51

	 4.6 Making The OSS Transition Easier	 52

5 IMPLEMENTATION GUIDELINES: LEGAL AND TECHNICAL PERSPECTIVE	 54

	 5.1 Overview	 	 54

	 5.2 Use Of OSS And Proprietary Software In A Heterogeneous Environment	 54

	 5.3 Licensing	 	 54

		 5.3.1 Differences Between Modification And Usage Of Software	 55

		 5.3.2 Example Scenario Of A Heterogeneous Software Environment	 55

	 5.4 Technical Guidelines For Usage Of OSS	 57

		 5.4.1 Proprietary Applications Which Have An OSS Equivalent	 57

		 5.4.2 Proprietary Applications Which Run In An OSS Environment	 57

		 5.4.3 Software Which May Be Accessed By Remote Display	 58

		 5.4.4 Software Which Will Run Under An Emulator	 59

		 5.4.5 Software Which Can Be Recompiled Under OSS	 61

PART C

6 CONCLUSION	 	 65

7 REFERENCES	 	 65

8 ABBREVIATIONS AND ACRONYMS	 66

LIST OF TABLES

	 Table 2.1: Implementation Guideline Matrix	 8

	 Table 2.2: Comparison of Available Linux Distributions	 14

	 Table 4.1: Potential Challenges in Implementing OSS	 44

	 Table 4.2: Considerations for OSS Project Management	 45

	 Table 4.3: Technical Consideration	 52

	 Table 4.4: OSS Consultation Implementation Checklist	 53

	 Table 8.1: Abbreviation & Acronyms	 66

viii

�

1	 INTRODUCTION

	 This document provides detailed recommendations resulting from the research and analysis conducted

in the development of the Malaysian Government Interoperability Framework for Open Source Software

(MyGIFOSS). It contains information on open source software (OSS), open standards and technical

specifications recommended for adoption in Malaysia. MyGIFOSS is prepared as a supplement to the

Malaysian Government Interoperability Framework version 1.0 (MyGIF), August 2003.

	 The intention of this document is to provide a guide for government agencies in the adoption of, and

migration to, OSS within their ICT framework. It addresses issues concerning the use of OSS and

proprietary software, integration of OSS with legacy systems, the exchange of information and data

between heterogeneous systems, and compliance to published open standards where applicable.

The emphasis for addressing the issues above is to ensure interoperability between systems and

applications.

1.1	 Definition

	 MyGIFOSS defines the minimum set of open standards and technical specifications governing the use

of OSS and information access. In addition, it also contains application notes to guide the handling of

migration issues regarding implementation of open source software in Government agencies.

	 MyGIFOSS covers the following aspects:

	 n 	 Examples of OSS within the solution areas of the Malaysian Public Sector OSS Master Plan.

	 n 	 Recommendations for Information and Services Access, covering standards availability.

n 	 Application Notes – implementation guidelines that addresses the issues of using OSS and

proprietary software within a heterogeneous environment.

	 Instead of creating new standards or specifications, MyGIFOSS adopts internationally recognised and

ratified open standards, where available. For the purposes of this document, open standards are defined

as standards which are international, transparent, unencumbered and published. These standards should

also be recognised and ratified by bodies such as:

		 i.	 International Organization for Standardization (ISO)

		 ii.	 International Telecommunication Union (ITU)

		 iii.	 Institute of Electrical and Electronic Engineers (IEEE)

		 iv.	 The World Wide Web Consortium (W3C)

		 v.	 Internet Engineering Task Force (IETF)

		 vi.	 European Computer Manufacturers’ Association (ECMA)

		 vii.	 Organisation for the Advancement of Structured Information Standards (OASIS)

		 viii.	 The Free Standards Group (FSG)

�

	 However, where no open standards are available, only well-published de-facto standards are applied.

1.2	 Objectives

	 MyGIFOSS’s objectives are:

n	 To enable proprietary and open source systems in different Government information systems, both

within Government and external to Government, to communicate and inter-operate efficiently

and effectively;

n	 To promote and foster the adoption of open source solutions within the Government, by

emphasising the need for openness, transparency and competitiveness for all implementation of

information systems;

n	 To promote and foster the adoption of open standards that enables the exchange of data between

applications;

n	 To promote vendor-neutral and technology-neutral implementations, with the adoption of open

standards, for all Government information systems; and

n	 To reduce the total cost of ownership of Government information systems, with the adoption of

open standards.

1.3	 Basis Of Recommendations

	 The key drivers guiding the recommendations of ICT standards and technical specifications for

MyGIFOSS are:

	 n	 Interoperability:

	 Standards and specifications recommended must be relevant to recommended use of OSS

applications and the use of open standards for Information Access.

	 n	 Availability of internationally recognised standards:

		 The standards, where available, must be recognised and adopted by internationally recognised

bodies.

1.4	 Scope

	 MyGIFOSS covers the use of OSS, standards for Information Access as well as application notes for

guidance in usage and migration. The scope of the applications covered are within the six solution

areas, as defined within the Malaysian Public Sector OSS Master Plan. The six solution areas are:

		

		 i.	 Workload Consolidation

		 ii.	 High Performance Computing

		 iii.	 Distributed Enterprise

		 iv.	 Application Solution

�

		 v.	 Infrastructure Solution

		 vi.	 Desktop Solution

	 MyGIFOSS standards and specifications should be considered for all new system implementations that

fall within the solution areas as defined within the OSS Master Plan. For legacy systems that fall within

the scope defined, agencies will need to assess if any integration are required between the legacy

systems and other systems. If it is determined that integration would be required, interfaces will need

to be defined to allow such integration to take place. The interfaces should take into consideration the

guidelines contained within this document.

1.5	 How To Use This Document

	 This document is structured in the following manner:

	 Part A: Chapters 2 and 3 provide technical specifications and standards for OSS.

	 Chapter 2: Aims to assist in the selection of OSS and contains examples for use within an agency’s ICT

implementation. A table detailing OSS examples are given, with their associated implementation and

solution areas. Agencies are encouraged to refer to the Preferences and Guidelines column in the table

when considering their implementations. The chapter then goes into greater detail on the software

features, capabilities and shortcomings.

	 Chapter 3: Gives recommendations on information access governing the use of standards for data

access and interchange. This chapter is relevant for agencies considering implementing software, either

open source or proprietary, which requires information access and interchange. It gives recommendations

to ensure availability of information and interoperability, allowing for different applications, systems and

infrastructure to exchange information.

	 Part B: Chapters 4 and 5 are discussions on implementation issues and guidelines.

	 Chapter 4: The chapter discusses the considerations that need to be taken into account when planning

for migration, without delving into the technical details.

	 Chapter 5: Discusses the use of OSS and proprietary software within a heterogeneous environment. It

also provides technical guidelines for OSS implementation and migration.

	 Part C: Chapters 6, 7 and 8 conclude the document with:

	 Chapter 6: A brief conclusion of MyGIFOSS’ objectives and purpose.

	 Chapter 7: A set of references used throughout the document.

	 Chapter 8: A list of abbreviations and acronyms used within the document.

P A R T A

2	 OPEN SOURCE SOFTWARE WITHIN DEFINED IMPLEMENTATION AREAS

2.1	 Overview

	 This chapter provides a selection of OSS to be used in an agency’s ICT implementations. It includes

	 a description on the features, rationale for inclusion and limitations of the software.

	 Within the Malaysian Public Sector OSS Master Plan, six solution areas were identified, as follows:

	 i.	 Workload Consolidation

	 ii.	 High Performance Computing

	 iii.	 Distributed Enterprise

	 iv.	 Application Solution

	 v.	 Infrastructure Solution

	 vi.	 Desktop Solution

	 The solution areas consist of individual software implementations, combining together to create a

	 complete solution. These individual software implementations are grouped into the headings below,

	 in which OSS examples are given:

n	 Operating System

Linux
BSD

n 	Desktop Applications

Office Productivity Suite
Project Management
Mail Client
Web Browser
Multimedia Player
Desktop Environment
Educational Software

n Vertical Applications

Knowledge Management (KM)
Content Management System (CMS)
Enterprise Resource Planning (ERP)
Document Management System (DMS)
Hospital Information System (HIS)
Land Information System (LIS)
Workflow System

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

n 	Server Applications

Mail Transfer Agent (MTA)
Mail Access Agent
Groupware
Web Server
Remote Login Server
Database Server
Proxy Server
File & Printer Server
Backup Server / Tool

n 	Network Security

Firewall
Network Intrusion Detection System (IDS)
Virtual Private Network (VPN)
Anti-virus
Anti-spam

→

→

→

→

→

→

→

→

→

→

→

→

→

→

�

�

2.2	 Guidelines/Standards Matrix

	 Table 2.1 below lists examples of OSS for use within identified implementation areas. The table is not

meant to be exhaustive, but should represent a wide range of software under open source licenses. The

subsections following the table go into greater detail with regards to the OSS examples given, providing

information on the software, its rationale for selection, known limitations (if any) and implementation

scenario examples.

No Implementation Area Solution Area Affected OSS Software Example Preferences and Guidelines

1 Operating System

1.1 Linux • Workload Consolidation
• High Performance Computing
• Distributed Enterprise
• Application Solution
• Infrastructure Solution
• Desktop Solution

• Red Hat
• Fedora
• Mandriva
• Novell SuSE
• Slackware
• ELX
• Debian
• Gentoo

For Linux Distributions, preference
should be made for those which
follow the Linux Standard Base
(LSB) 1.1, or higher, specifications.

1.2 BSD • Workload Consolidation
• High Performance Computing
• Distributed Enterprise
• Application Solution
• Infrastructure Solution
• Desktop Solution

• FreeBSD
• NetBSD
• OpenBSD

There are three popular flavours
of BSD, with the rest being niche
offshoots. The user is advised
to use the most relevant for their
application.

2 Desktop Applications

2.1 Office Productivity Suite • Desktop Solution • Open Office
• KOffice
• Abiword
• GNUmeric

Data formats based on the
Organisation for the Advancement
of Structured Information Standards
(OASIS) Open Document XML
format should be used.

2.2 Project Management • Desktop Solution • MrProject
• TaskJuggler
• PHProjekt
• TUTOS

Software chosen should be based
on ability to provide required
functions, e.g. GANTT charts,
timekeeping, problem ticket tracking.

2.3 Mail Client • Desktop Solution • Evolution
• Kmail
• Thunderbird
• Pine

Adherence to standard protocols,
e.g. POP and IMAP, and other
Internet RFCs are preferred.

2.4 Web Browser • Desktop Solution • Mozilla
• Firefox
• Konqueror
• Epiphany

Adherence to W3C and related
WWW protocols should be preferred.

2.5 Multimedia Player • Desktop Solution • MPlayer
• Xine
• xmms

Ability to play multiple formats is
desirable. Should also be able to play
open, patent-free media formats, e.g.
Ogg Vorbis.

2.6 Desktop Environment • Desktop Solution • K Desktop Environment
 (KDE)
• GNOME

The examples given here are the
two most mature integrated desktop
environment available for Linux and
BSD. Use of one environment over
the other depends on the user’s
preference.

�

No Implementation Area Solution Area Affected OSS Software Example Preferences and Guidelines

2.7 Graphic Manipulation	 • Desktop Solution • Gimp The example given here is the most
mature graphic manipulation tool
available, works on many operating
systems and support most of the
graphic files format, e.g. gif, jpg, bmp,
png.

2.8 Educational Software		
	

• Application Solution
• Desktop Solution

• Kalzium
• KmPlot

Educational software are
applications designed for teaching
and learning. Suitability of the
applications naturally depend on the
requirements as determined by the
educational system.

3 Server Application

3.1 Mail Transfer Agent (MTA)	 • Infrastructure Solution • Sendmail
• qmail
• Postfix
• Exim

The Mail Transfer Agents, generally
referred to as mail servers, should
conform to the Internet RFCs
governing email over the Internet.

3.2 Mail Access Agent	 • Infrastructure Solution • UW IMAP
• Courier IMAP

IMAP servers generally implement
POP servers as well. The main
purpose of IMAP/POP servers is to
allow access to the mails stored in
the mail servers.

3.3 Groupware	 • Infrastructure Solution
• Application Solution

• phpGroupWare
• OpenGroupware

OSS Groupware vary in features and
capabilities. Consider the best fit,
and explore the possibility of having
to make your own enhancements.

3.4 Web Server • Infrastructure Solution • Apache Any web server must be able to
serve pages which adhere to W3C
specifications and guidelines.

3.5 Remote Login Server	 • Workload Consolidation
• High Performance Computing
• Distributed Enterprise
• Application Solution
• Infrastructure Solution
• Desktop Solution

• OpenSSH The example given here implements
documented open standards
for asymmetric and symmetric
encryption. Any secure remote
access software should implement
the same.

3.6 Database Server • Workload Consolidation
• High Performance Computing
• Distributed Enterprise
• Application Solution
• Infrastructure Solution

• MySQL
• PostgreSQL
• Firebird

Relational Databases are the
often at the core of many complex
applications. Depending on the
need, the choice of any particular
database is largely dependent on the
capabilities and requirements for the
applications.

3.7 Proxy Server • Infrastructure Solution • Squid Proxy servers caches web and
ftp traffic. They help to reduce
bandwidth requirements. The use of
proxy servers are recommended.

3.8 File & Print Server • Infrastructure Solution • SAMBA
• Linux NFS
• BSD NFS
• Common UNIX Printing
• System (CUPS)

The Network File System (NFS) and
CUPS are standard on all UNIX and
UNIX-like operating systems, thus
enabling interoperability between
these systems. Some non-UNIX
proprietary operating systems do
not implement NFS or CUPS, but
use SMB/CIFS instead. Use of
SAMBA is recommended where
interoperability with these systems
are required.

10

No Implementation Area Solution Area Affected OSS Software Example Preferences and Guidelines

3.9 Backup Server / Tool • Workload Consolidation
• High Performance Computing
• Distributed Enterprise
• Application Solution
• Infrastructure Solution
• Desktop Solution

• Amanda Backup software has to have
capability to do incremental backups
and network spanning across
servers or storage area networks.
Further, it must have the ability to
handle various operating systems
and backup devices, such as disks,
tapes and optical libraries and
multichangers.
Analysis of the level of backups
are needed before obtaining any
particular software.

4 Network Security

4.1 Firewall • Infrastructure Solution • Linux iptables
• FreeBSD ipfilter
• IPFW
• OpenBSD packetfilter

Firewalls are generally regarded as
the first line of defense for Internet
security. There are two kinds of
firewalls – software and hardware.
Software firewalls are implemented
within general purpose servers
while hardware firewalls are special
purpose appliances.
The choice of a firewall
implementation is often down to
“high-level” considerations, like ease
of configuration and maintenance
since the capabilities are often
similar across platforms.

4.2 Network Intrusion
Detection System (IDS)

• Infrastructure Solution • Snort Network IDS often acts as a forensic
tool for analysing network breaches.
It requires active monitoring as well
as constant updating of signatures
to be effective.
When considering a Network IDS,
those which are being actively
updated with intrusion signatures are
recommended.

4.3 Virtual Private Network
(VPN)

• Infrastructure Solution • OpenVPN
• FreeS/WAN

VPNs are used as a cheaper
alternative to having costly lease-
lines to connect distance branch
offices and sites. The objective
of a VPN is to leverage on the
low-cost of having general Internet
connections while having the
benefits of security and privacy for
internal traffic.
A VPN implementation must have
strong encryption and mechanisms
for trust and authentication.

4.4 Anti-virus • Infrastructure Solution
• Desktop Solution

• ClamAV OSS operating systems and
applications are not generally under
threat of viruses, worms and trojans.
However, they are often used as
gateways and servers for proprietary
operating systems and applications
which are vulnerable. As such, anti-
virus scanners for these proprietary
software have been created and
deployed on OSS systems.
Anti-virus software which have are
actively developed and have the
virus signatures constantly updated
are highly recommended.

11

No Implementation Area Solution Area Affected OSS Software Example Preferences and Guidelines

4.5 Anti-spam • Infrastructure Solution
• Desktop Solution

•	 SpamAssassin
•	 Built-in spam filters
 within Evolution,
 Thunderbird and Kmail

Spam filtering are traditionally
executed at the mail server, however,
there is now an increasing trend to
include spam filtering capabilities on
the mail clients themselves. OSS
mail clients often have extensive
filtering capabilities.
When considering a mail client,
those with spam filtering capabilities
are recommended for installation.

5 Vertical Application

5.1 Knowledge Management
(KM)

• Application Solution • phpwiki
• zwiki
• mediawiki

KM systems are an attempt to
capture and retain knowledge
within an organisation. It is most
successful in “flattening” an
organisation’s hierarchy, giving
equal opportunities for everyone
within to contribute and disseminate
information and knowledge.
When choosing a KM system, the
user is advised to consider the level
of access control and moderation
needed since the philosophy and
implementation of KM systems vary
widely in terms of the eligibility of
users to input and edit information.

5.2 Content Management
System (CMS)

• Application Solution • Phpnuke
• mambo
• typo3
• opencms

CMSes are deployed as easy-to-use
applications for websites and portals.
There are many CMSes on the
market today and the user is advised
to carefully consider the features
and capabilities of each one.
CMSes which produce open
standards compliant web pages are
recommended.

5.3 Enterprise Resource
Planning (ERP)

• Workload Consolidation
• High Performance Computing
• Distributed Enterprise
• Application Solution
• Infrastructure Solution
• Desktop Solution

• Fisterra
• Compiere

Enterprise Resource Planning (ERP)
applications are typically large and
requires a lot of customisation to suit
any particular enterprise.
It is often difficult to determine
which of the ERP subsets that
one might need. This is not
helped by the fragmentation of
ERP itself into, for e.g. Customer
Relations Management, Supply
Chain Management, Manufacturing
Resource Planning, Partner
Relations Management and other
higher level subsets like business
intelligence and KPI dashboards.
When considering an ERP system,
careful planning and attention to
process organisation are needed.

12

No Implementation Area Solution Area Affected OSS Software Example Preferences and Guidelines

5.4 Document Management
System (DMS)

• Application Solutions • KnowledgeTree
• Eidetic
• Terracotta

Document Management Systems
help in organising and archiving
official documents and other related
collateral, such as presentations,
drawings and designs.
The use of a DMS is needed for
efficient and effective management
of an organisation’s intellectual
property.

5.5 Hospital Information
System (HIS)

• Application Solution • OpenVISTA
• Care2x

Hospitals are complex organisations
with multiple levels of operations
– usually divided into clinical
and non-clinical operations. The
administration of a hospital benefits
greatly with the implementation of
an HIS.
When choosing an HIS, it is
important to clearly have well
defined SOPs and to evaluate
whether the HIS’es considered have
the required flexibility and scalability
to implemented the SOPs.

5.6 Land Information System
(LIS

• Application Solution • osrs
• grass

Comprehensive Land Information
Systems (LIS) are still in infancy
but there are individual applications
which handle different aspects
needed for land and real estate
management. Among the more
mature ones are Geographical
Information Systems (GIS).
Choosing an LIS would involve
similar processes to choosing an
HIS above, with great importance on
having well defined SOPs.

5.7 Workflow System • Application Solution • Bonita Bonita is a flexible cooperative
workflow system, compliant to
WfMC specifications, based on the
workflow model proposed by the
ECOO Team, which incorporates the
anticipation of activities as a more
flexible mechanism of workflow
execution. Bonita is Open Source
and is licensed under the LGPL.

Table 2.1: Implementation Guideline Matrix

13

2.3 	 Operating Systems

2.3.1	 LINUX

	 Background description:

	 Linux consists of the Linux kernel (core operating system - OS), originally written by Linus Torvalds,

along with utility programs developed by the Free Software Foundation and others. The combination

of thousands of OSS and the Linux kernel makes it possible for a functional operating system to

be created. Since then, many commercial and community driven projects were spawned to create

new operating systems based on the Linux kernel and associated OSS. The differences in how they

were created, the methodology taken to create them and the philosophy behind the operating systems

created, are now known as Linux distributions. In essence, the three different “uses” of the word Linux

can be summarised as:

	 i.	 Kernel – the kernel is the central program of any operating system. This is the program that

talks directly to the hardware of the computer. Other programs make requests of the kernel to

get something done on the computer. For instance, in order to put a character on the computer

screen, a program must ask the kernel to put a certain character in a certain place on the display

screen. (There are exceptions to this, but in general, all communication to the computer hardware

goes through the kernel.)

	ii.	 Operating System - the combination of the kernel and the application software used to interact

with the kernel.

iii.	 Distribution – the many different flavours of Operating Systems created by thousands of other

software packaged together with the Linux kernel.

	 Further information on the Linux kernel, operating system and distributions can be found at the Linux

Documentation Project website: http://www.tldp.org/

	 The specific document that answers the frequently asked questions on Linux can be found at:

	 http://tldp.org/FAQ/Linux-FAQ/index.html

	 Table 2.2 on page 14 gives a non-exhaustive comparison of available Linux distributions, giving

among other things their compliance to the Linux Standard Base (LSB) and computer architectures

supported.

	 A note on the Linux Standard Base:

	 From the Linux Standard Base web site (http://www.linuxbase.org/):

14

Mission Statement

	 To develop and promote a set of standards that will increase compatibility among Linux distributions and

enable software applications to run on any compliant system. In addition, the LSB will help coordinate

efforts to recruit software vendors to port and write products for Linux.

	

	 What the statement essentially means in the practical sense is that the LSB seeks to remove the

uncertainty in choosing a Linux distribution. Distributions which are LSB compliant retains the ability to

run any applications which are developed following the LSB specifications.

	

	 As such, when choosing a Linux distribution for implementation, it is strongly recommended that a LSB

compliant distribution is chosen.

Distribution
LSB

Compliance

Vendor/
Community

Support

Multimedia
Support

Package
Management

Auto
Update

Arch Support

Red Hat 1.3 Vendor Limited Rpm Yes
i386, ia64, ppc, s390,

s390x, x86-64

Fedora No Community Limited Rpm Yes i386, x86-64

Novell SuSe 1.3, 2.0 Vendor Yes Rpm Yes
X86, x86, PowerPC, m68k,

ARM, MIPS

Mandrake No Vendor/Community Yes Rpm Yes i586

ELX No Vendor Yes apt-get (synaptic) Yes X86-486

Slackware No Community Yes tgz Yes i486

Debian No Community Yes apt-get, dpkg Yes
Alpha, Arm, HPPA, i386,
IA64, m68k, Mips, PPC,

S390, Sparc

Gentoo No Community Yes emerge Yes
x86, amd64, hppa, ppc,

ppc64, sparc

Table 2.2: Comparison of Available Linux Distributions

Red Hat/ Fedora

Description

•	 Both are developed and maintained by Red Hat, Inc.
•	 Red Hat Linux is the commercially supported version by Red Hat Inc.
•	 Fedora Linux is the community version, which are distributed without any commercial support from
 Red Hat Inc.

Reference •	 http://www.redhat.com/

Rationale for
selection

•	 They are most well-known.
•	 They are easy to install.
•	 There are excellent community supports.
•	 There are commercial supports.

Limitations
•	 Poor multimedia support due to Red Hat Inc.’s decision not to include patented software and algorithms,
 e.g. MP3, Windows Media formats, Apple’s Quicktime.

Implementation
Scenario Example

•	 Red Hat Linux distributions are commonly used in server environments. This is due to its large support for
 commercial based software like Oracle and IBM WebSphere.

15

Mandriva

Description
•	 Formerly known as Mandrake, it was created in 1998 by Gael Duval, with the goal of making Linux easier
 to use for everyone.
•	 Mandriva is the result of Mandrake acquiring Conectiva of Brazil, another Linux distribution company.

Reference •	 http://www.mandriva.com/

Rationale for
selection

•	 Mandriva is easier to use for non-technical desktop users.
•	 There are enormous community supports.
•	 It is user-friendly with graphical configuration utilities.

Limitations • 	It is limited to x86 architectures.

Implementation
Scenario Example

•	 Mandriva Linux Distribution is commonly used on desktop environments. This is mainly due to its
 robustness, attractive graphics and user friendliness.

SuSE

Description
•	 Distributed by a German company, SuSE Linux AG. Very popular in Europe.
•	 It is one of the fastest growing distributions worldwide.
•	 It was recently purchased by Novell Inc.

Reference •	 http://www.suse.com/

Rationale for
selection

•	 SuSE is widely implemented in European governments and corporations.
•	 It supports multiple architectures, e.g. x86, PowerPC, IBM Mainframes.
•	 It is easy to install.
•	 It has special desktop edition, i.e. Novell Linux Desktop.

Limitations •	 No known major limitations exist.

Implementation
Scenario Example

•	 SuSE Linux distributions are mostly used because of its comprehensive system and network administration
 tools. It has excellent commercial support on various platforms.

Slackware

Description •	 One of the earliest Linux distributions, started by Patrick Volkerding in 1993.

Reference •	 http://www.slackware.com/

Rationale for
selection

•	 Slackware is favoured by many system administrators for servers, due to its minimalist design.
•	 It is one of the older Linux distributions, proving its stability.
•	 It does not suffer from the package dependency issues of RPM-based distributions.

Limitations
•	 Minimalist design and simple installation tools means that there is a steeper learning curve.
•	 Its support options not as comprehensive as Red Hat, SuSE or Mandriva.
•	 It supports only x86 hardware.

Implementation
Scenario Example

•	 Slackware are mainly used on servers which require minimal user interaction. It is often the distribution of
 choice for edge servers, i.e. firewalls, intrusion detection systems etc.

2.3.2	 BSD

	 Background description:
	 BSD stands for “Berkeley Software Distribution”, the UNIX derivative distributed by the University

of California, Berkeley beginning from the 1970s. It is also used collectively to describe the modern

descendants of the original distribution. The BSD family of operating systems provides a number

of complete operating systems packages, the three most popular being FreeBSD, NetBSD and

OpenBSD.

16

FreeBSD

Description
•	 An advanced OS derived from BSD, the version of UNIX developed at the University of California,

Berkeley.
•	 It is managed by the FreeBSD Foundation.

Reference •	 http://www.FreeBSD.org/

Rationale for
selection

•	 FreeBSD is ideal for internet and intranet servers.
•	 It has features of high performance and ease of use by end users.
•	 It is optimized for x86 platform.
•	 It has a lot of Linux applications ported.
•	 It has the ability to run Linux binaries.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 FreeBSD is used as an alternative to Linux operating Systems.
•	 It is commonly used where the users are more comfortable with native UNIX features.
•	 Due to the development methodology, FreeBSD is not likely to fragment and fork.

NetBSD

Description

•	 NetBSD is a free, secure, and highly portable UNIX-like Open Source operating system available for many
 platforms. Its OS is also derived from *BSD, the version of UNIX developed at the University of California,
 Berkeley.
•	 It is managed by the NetBSD Foundation.

Reference •	 http://www.netbsd.org

Rationale for
selection

•	 NetBSD has a wide range of support for many platforms. NetBSD is designed to take advantage of the
 latest high end hardware available in Alpha, PowerPC, and PC systems, while still retaining support for
 older architectures.
•	 The entire kernel and the core of the userland utilities are shipped under a BSD license. This allows
 companies to develop products based on NetBSD without the requirement to make the changes public.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 NetBSD is used as an alternative to Linux Operating Systems.
•	 It is commonly used where the users are more comfortable with native UNIX features.
•	 NetBSD has a wide range of support for various platform makes it suitable for research and development
 environments.

OpenBSD

Description
•	 OpenBSD is a free, multi-platform 4.4BSD-based UNIX-like Operating System. It emphasizes portability,
 correctness, and integrated cryptography.

Reference •	 http://www.openbsd.org/

Rationale for
selection

•	 OpenBSD is the only Operating System confident enough to claim that it has only one remote hole in its
 default install for the last 8 years.
•	 It is exported with cryptography, making it suitable for developing cryptography applications.
•	 Its Operating System includes integrated cryptography applications for software and hardware.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 OpenBSD is used as an alternative to Linux Operating System.
•	 It is often used as firewalls, since its default install is considered to be secure.
•	 It is exported with cryptography, making it suitable for developing cryptography applications.

17

2.4	 Desktop Applications

2.4.1	 Office Productivity Suite

	 Background description:

	 An Office Suite is a group of applications, consisting of a text editor, spreadsheet, presentation slides

creator and optionally a simple database that are used as productivity tools

OpenOffice

Description

•	 OpenOffice originated from a proprietary office suite, StarOffice.
•	 StarOffice was a product from a company called StarDivision GMBH, which was acquired by Sun
 Microsystems in 1999.
•	 Sun Microsystems then open sourced StarOffice, and renamed it OpenOffice.org.
•	 There are still successive versions of the proprietary StarOffice, using the same code base as OpenOffice.
•	 Differences between the two can be found at:
 http://www.openoffice.org/FAQs/mostfaqs.html#7

Reference •	 http://www.openoffice.org/

Rationale for
selection

•	 OpenOffice has a similar user interface with popular proprietary office suites.
•	 It has features comparable to Microsoft Office.
•	 It can read and edit Microsoft Office files format.
•	 Supports the OASIS OpenDocument format.

Limitations
•	 Reading and writing to Microsoft Office file formats by using OpenOffice may not be reproduced perfectly.
•	 OpenOffice may have limited fonts and graphical images on platforms other than Microsoft Windows.

Implementation
Scenario Example

•	 OpenOffice can be installed on Linux, Solaris, FreeBSD or Windows Operating Systems.
•	 It allows co-existence with Microsoft Office Suite when it is being installed on Microsoft Windows.
•	 In an office environment, it can be used for all desktop computers.

2.4.2	 Project Management

	 Background description:

	 Project Management software aims to assist the management of projects by providing tools to plan and

monitor timelines, milestones, resources and budget, among others.

MrProject

Description
•	 MrProject is developed by Code Factory.
•	 A tool using Gantt charts to visualize project timelines, milestones and progression.
•	 Some other features are task dependencies, resource tables, allocation and groups.

Reference •	 http://mrproject.codefactory.se/

Rationale for
selection

•	 It is the closest alternative tool to Microsoft Project.

Limitations •	 Unable to open other project management programs’ file formats.

Implementation
Scenario Example

•	 MrProject can be installed for project management purposes.
•	 In a coordinated project environment, MrProject can help organize and manage people, resources and
 time. To use its full features, PostgreSQL database needs to be installed along with Linux clients.

18

2.4.3	 Mail Client

	 Background description:

	 Mail clients are formally referred to as Mail User Agents (MUA). Their purpose are for retrieving,

reading, composing and replying/sending emails.

Evolution

Description
•	 Evolution is developed by Ximian to provide a unified email client, similar to Microsoft’s Outlook
•	 Ximian was recently acquired by Novell Inc.

Reference •	 http://www.ximian.org/

Rationale for
selection

•	 It is the closest alternative tool to Microsoft Outlook.
•	 It comes with Personal Information Manager (PIM) feature.
•	 It supports GNU Privacy Guard.
•	 It supports Microsoft exchange server with the Ximian connector.

Limitations •	 No known limitations.

Implementation
Scenario Example

•	 Evolution can be installed on Linux or FreeBSD Operating System.
•	 In an office environment, it can be used on all desktop computers running an OSS or UNIX operating
 system.

2.4.4	 Web Browser

	 Background description:

	 A program to surf the Internet.

Mozilla and Firefox

Description

•	 Mozilla Firefox is a web browser that originated from Netscape Navigator, which was open sourced by the
 Netscape corporation.
•	 The Navigator code was considered too complicated and a complete rewrite was made, resulting in Mozilla.
•	 Mozilla is the base for several other derived web browsers, e.g. Firefox, Netscape, Galeon.
•	 Mozilla comes with email client, chat tools, html composer and news reader.
•	 Firefox is the browser only.

Reference •	 http://www.mozilla.org/

Rationale for
selection

•	 Firefox is now the most popular OSS browser.
•	 It is the most standard compliant OSS web browsers.
•	 It has extra functionalities which include high privacy and security encryption, pop ups and junk mail
 stopper, and tabbed browsing.

Limitations •	 Inability to access some Internet Explorer specific websites, especially those containing ActiveX.

Implementation
Scenario Example

•	 Firefox can be installed on Linux, FreeBSD or Windows Operating Systems.
•	 It also allows co-existence with Internet Explorer as well as other commercial browsers when it is being
 installed on Microsoft Windows.
•	 In an office environment, it can be used for all desktop computers.

19

Konqueror

Description

•	 Konqueror was developed by the KDE group to be their default file and web browser.
•	 It uses its own rendering engine, KHTML, but can also use Mozilla’s Gecko to render web pages.
•	 The rendering engine is constantly improved and is now used by Apple Computers Inc. for their Safari
 browsers.

Reference •	 http://www.kde.org/

Rationale for
selection

•	 Konqueror integrates local and external browsing.
•	 Its rendering engine is under constant enhancements.
•	 It has the ability to change browser identification, depending on website visited. Therefore, Konqueror has
 the ability to present itself as Internet Explorer, Mozilla or any other browser.
•	 It has several other innovations, such as integrated translation tools, tabbed browsing etc.

Limitations •	 Konqueror may not correctly render Internet Explorer specific pages.

Implementation
Scenario Example

•	 Konqueror can be installed on Linux or FreeBSD.
•	 In an office environment, it can be used on desktop computers that uses any OSS or UNIX operating
 systems

2.4.5	 Multimedia Player

	 Background description:

	 A multimedia player for audio and video

MPlayer

Description
•	 MPlayer is developed to be a player that can play any type of known video formats using pre-existing
 codecs

Reference •	 http://www.mplayerhq.hu/

Rationale for
selection

•	 For i386 architecture-based machines, MPlayer can utilise codecs used by Windows-based media players.
•	 MPlayer’s default supported formats are MPEG, AVI, VCD and DVD.
•	 It has extra supported formats (codecs required) for Apple Quicktime Movie (MOV), RealPlayer (RM),
 Microsoft Windows Media (WMV) and others.

Limitations •	 When using certain codecs, MPlayer may not be distributable under an open source license.

Implementation
Scenario Example

•	 MPlayer can be installed on any OSS or UNIX operating system.
•	 With the right decoder files installed, it can view almost any file formats including MOV, RM and WMV.

xine

Description •	 xine is an open source mpg and vcd player.

Reference •	 http://Xinehq.de/

Rationale for
selection

•	 It has a user-friendly interface.
•	 It has a wide range of supporting format.

Limitations
•	 It cannot play certain video formats, which do not have Linux or FreeBSD codecs.
•	 It cannot play audio-only files.

Implementation
Scenario Example

•	 xine can be installed on any OSS or UNIX operating system.

20

xmms

Description •	 xmms is an open source audio player, which has a similar interface to WinAmp.

Reference •	 http://www.xmms.org/

Rationale for
selection

•	 It supports MP3, Ogg Vorbis, WAV and audio CD formats.

Limitations
•	 To support MP3, xmms requires a certain library. Since MP3 is a patented product, some Linux distributions
 do not include it.

Implementation
Scenario Example

•	 xmms can be installed on any OSS or UNIX operating system.
•	 It can play many different audio file formats including WAV, MP3 and Ogg Vorbis.

2.4.6	 Desktop Environment

	 Background description:

	 A desktop environment is a graphical user interface (GUI) system which sits on top of Linux, BSD or

other UNIX-like operating systems. For these OSes, the GUI is not tightly coupled with the kernel, as in

Microsoft’s Windows environment. As such, there are several desktop environments that can be used.

KDE

Description
•	 KDE or K Desktop Environment is an open source project initiated by Matthias Ettrich in 1996.
•	 It was created to provide a uniform, consistent and user-friendly desktop environment for UNIX and UNIX-
 like operating systems.

Reference •	 http://www.kde.org/

Rationale for
selection

•	 KDE has a “click, drag and drop” capability.
•	 Its administration is easy with its bundled programs.
•	 It supports other open source environment software.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 KDE can be installed as the desktop environment of choice for OSS and UNIX operating systems.

GNOME

Description

•	 After the KDE project was started, some Free Software advocates raised the issue of licensing. Even
 though KDE was licensed under the GPL, its core library, QT (http://www.trolltech.com/) was not.
 Furthermore, the OSS license for QT was considered incompatible with the GPL.
•	 A parallel desktop environment, developed with GTK+, a GPL’ed library, was initiated. The project was, and
 still is, led by Miguel de Icaza.
•	 The project is called GNOME, short for the GNU Network Object Model Environment.
•	 It was also created to provide a uniform, consistent and user-friendly desktop environment for UNIX and
 UNIX-like operating systems.

Reference •	 http://www.gnome.org/

Rationale for
selection

•	 It has a “Click, drag and drop” capability.
•	 Its administration is easy with its bundled programs.
•	 It supports other open source environment Software.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 GNOME can be installed as the desktop environment of choice for OSS and UNIX operating systems.

21

2.4.7	 Graphic Manipulation

	 Background description:

	 Software that can be used to perform various types of graphical manipulation.

Gimp

2.4.8	 Education Software

	 Background description:

	 Software used for educational purposes for various fields such as chemistry, mathematics, physics.

Kalzium

Description •	 Kalzium is an information database which shows the periodic system of elements for chemistry studies.

Reference •	 http://www.kde.org

Rationale for
selection

•	 It can be used to visualize the Periodic Table of the Elements by blocks, groups, acidic behavior or different
 states of matter.
•	 It can also be used to plot data for a range of elements (weight, mean weight, density, IE1, IE2,
 electronegativity).
•	 It can go back in time and see what elements were known at a given date.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 It is used in chemistry classes.

KmPlot

Description •	 It is a mathematical function plotter.

Reference •	 http://www.kde.org

Rationale for
selection

•	 KmPlot is a mathematical function plotter for the KDE Desktop. It has a powerful built-in parser. It can
 plot different functions simultaneously and combine them to build new functions.
•	 It supports parametric functions and functions in polar coordinates. Several grid modes are supported.
 Plots may be printed with high precision in the correct scale.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 It can be used for mathematical applications.

Description •	 Gimp is the most mature OSS graphic manipulation tool
•	 Works on many operating systems, including Linux, BSD, Windows and Mac OS X.

Reference •	 http://www.gimp.org

Rationale for
selection

•	 It supports most of the graphic files format, e.g. gif, jpg, bmp, png.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 It is used for creating graphical images and editing graphics.
•	 It can be used as a replacement for proprietary image manipulation software.

22

2.5	 Server Applications

2.5.1	 Mail Transfer Agent (MTA)

	 Background description:

	 Email servers are formally referred to as Mail Transfer Agents (MTA). Their purpose are to receive and

distribute emails to their correct destinations. An email server can also serve as a relay, i.e. it forwards

emails between locations when direct routing is not possible.

Sendmail

Description
•	 Sendmail is written by Eric Allman while a researcher at the University of California at Berkeley.
•	 It is the most popular UNIX-based MTA.

Reference •	 http://www.sendmail.org

Rationale for
selection

•	 It is included in most OSS operating systems.
•	 It has the ability to disable open relaying.
•	 It has spam filtering capabilities.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 Sendmail can be used to replace Microsoft Exchange server for mail transport.
•	 However, there are some migration issues that might effect Microsoft Exchange groupware functionality.

qmail

Description
•	 qmail is written by Dan Bernstein while a researcher at the University of Illinois, Chicago.
•	 It is the second most popular UNIX-based MTA

Reference •	 http://www.qmail.org

Rationale for
selection

•	 It is included in most OSS operating systems.
•	 It has good mailing list management capabilities.
•	 It claims to be more secure that Sendmail.
•	 It is very efficient and fast.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 Qmail can be used as an alternative to Sendmail.

Postfix

Description
•	 Postfix is written by Wietse Zweitze Venema while working at IBM’s Thomas J.Watson Research Center, USA.
•	 It is another alternative UNIX-based MTA

Reference •	 http://www.postfix.org

Rationale for
selection

•	 It is included in most OSS operating systems.
•	 It has the ability to disable open relaying.
•	 It has spam filtering capabilities.
•	 It has a similar configuration scheme to the Apache web server.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 Postfix can also replace Microsoft Exchange server for mail transport.
•	 However, there are some migration issues that might effect Microsoft Exchange groupware functionality.

23

2.5.2	 Mail Access Agent

	 Background description:

	 Mail Access Servers are software which implements protocols that allow mail clients to retrieve emails

from a mail server. The most used protocols are Post Office Protocol (POP) and Internet Message

Access Protocol (IMAP). IMAP is the more advanced protocol. It supports online and disconnected/

offline access. POP only supports offline access.

UW IMAP

Description •	 UW IMAP is Developed by University of Washington to implement the IMAP protocol.

Reference •	 http://www.washington.edu/imap/

Rationale for
selection

•	 UW IMAP has a full featured imap server.
•	 It also supports POP.
•	 It is the default imap server for most Linux distributions.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 IMAP is mainly used as a mechanism for retrieving electronic mail from the servers.
•	 It is most suitable for use by users accessing emails from multiple clients and machines.

2.5.3	 Groupware

	 Background description:

	 Software that enables a group of users to collaborate on a project by means of sharing resources.

phpGroupWare

Description •	 phpGroupWare is a multi-user web-based groupware suite written in PHP.

Reference •	 http://www.phpgroupware.org

Rationale for
selection

•	 phpGroupWare has production (stable) version provides an API for developing additional applications.
•	 It has a built-in installation program.
•	 It has tight security controls via Access Control List (ACL).
•	 It has multi-language support using gettext.
•	 It has a Preferences System which has the ability to allow users to change preferences only for current
 session (does not save to database).

Limitations •	 phpGroupWare was not designed to handle groups for electronic commerce transactions.

Implementation
Scenario Example

•	 phpGroupWare requires a database server to manage its data.
•	 It also requires a Web Server to be installed with PHP support in it.
•	 In most cases, phpGroupWare can be implemented to handle community, office or departmental groups.

2.5.4	 Web Server

	 Background description:

	 An application to host website content. Some web servers can be integrated with other middle tier

applications or tools to provides web-based applications.

24

Apache

Description

•	 Apache is an HTTP or Web Server.
•	 It can run on UNIX and Microsoft Windows platform.
•	 Apache started when Brian Behlendorf started collecting patches to be applied to the last version of NCSA
 in 1995.
•	 Hence the name Apache came from “A patchy server” (this is an apocryphal anecdote).
•	 The Apache Software Foundation was formed in June of 1999 to maintain the Apache project.
•	 Now Apache is known as a robust, commercial-grade, featureful, and freely-available source code
 implementation of an HTTP (Web) server.

Reference •	 http://www.apache.org/

Rationale for
selection

•	 Currently, 67% of the web servers worldwide us Apache.
•	 It supports development tools such as php, cgi (perl, c++).
•	 It is modularly designed, i.e. modules can be added to have extra functionality.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 Apache Web Server is very robust web server.
•	 It has various extensions that can support many different languages.
•	 In an Information Technology infrastructure that does not use proprietary or Microsoft ASP or .NET
 technology, it can be used to replace any other web server.
•	 On Information Technology infrastructure that uses Microsoft ASP or .NET technology, migration issues

can occur.

2.5.5	 Remote Login Server

	 Background description:

	 Remote login is a method to access other machines. This is usually done for convenience of administration

and maintenance. An unencrypted login can compromise the remote machine security. Therefore, use

of secure methods are recommended.

OpenSSH

Description
•	 OpenSSH is the open source tool implementing the ssh protocol.
•	 The ssh protocol is a secure alternative to telnet, rlogin and ftp. OpenSSH was originally written for
 OpenBSD.

Reference •	 http://www.openssh.org/

Rationale for
selection

•	 OpenSSH’s transactions are encrypted.
•	 It is the default remote login used by all Linux distributions and BSD flavours.
•	 It comes with extra tools such as scp for remote copy and sftp for implementing file transfer protocol (ftp)
 securely.
•	 It supports other open source environment software.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 OpenSSH is arguably the most secure way to access a remote machine.
•	 It supports most operating systems, and has a variety of clients for different kinds of operating systems.
•	 It allows secure login and file transfer from one host to the other.

25

2.5.6	 Database Server

	 Background description:

	 A database is an organised collection of data, and a database engine as applies to software is a

system for the organisation and collection of data. Databases form an important component within an

organisation, ranging from ERP, CRM, to web-based applications and portals.

MySQL

Description

•	 MySQL is an open source relational database. It is develop by MySQL AB, a company from Finland.
•	 MySQL comes with two licenses, a GPL-ed version and a proprietary one.
•	 For applications that require support and the ability to make modifications to the source code without
 releasing the changes, the proprietary license can be used.

Reference •	 http://www.mysql.org/

Rationale for
selection

•	 MySQL is lightweight and less resource hungry.
•	 It is the most popular database for PHP-based applications.
•	 It works with many other development tools.
•	 Third-party tools are available to provide a graphical user interface for administration.
•	 It can be installed on Windows as well as Linux/FreeBSD Operating System.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 MySQL can be used as a replacement for proprietary databases in just about any scenario.
•	 In large-scale implementations, hardware requirements should be given due consideration.
•	 In the case of migrating from other databases to MySQL, a few migration issues might cause some
 problems, especially where non-ANSI SQL calls are frequently used.

PostgreSQL

Description

•	 PostgreSQL is a free RDBMS, originally started in 1985 by Micheal Stonebreaker at University of
 California, Berkeley.
•	 It was originally initiated as a more modern and contemporary version of another database called Ingres.
•	 It is released under a flexible BSD-style license.

Reference •	 http://www.postgresql.org/

Rationale for
selection

•	 PostgreSQL is a full featured DBMS database.
•	 It is able to handle large volumes of data.
•	 It works with many development tools.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 PostgreSQL can be used as a replacement for proprietary databases in just about any scenario.
•	 In large-scale implementations, hardware requirements should be given due consideration.
•	 In the case of migrating from other databases to PostgreSQL, a few migration issues might cause some
 problems, especially where non-ANSI SQL calls are frequently used.

2.5.7	 Proxy Server

	 Background description:

	 Proxy servers act as a form of protection for client machines accessing untrusted web and ftp servers.

It achieves this by acting as the intermediary between a client requesting information and the server

providing the information, in the process masking the client’s identity.

Squid

Description
•	 Squid is a full-featured open source proxy and cache server designed to run on UNIX systems.
•	 It can also be installed on Microsoft Windows.

Reference •	 http://www.squid-cache.org/

Rationale for
selection

•	 It supports proxying and caching of URIs (e.g. HTTP, FTP)
•	 It supports proxying for SSL cache hierarchies ICP, HTCP, CARP, Cache Digests.
•	 It supports transparent caching and HTTP server acceleration.
•	 It supports extensive access controls.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 Squid is a proxy server to cache heavily accessed files on the network.
•	 It works well with other applications like Apache Web Server to cache web pages.
•	 A web server runs together with a squid server to minimize the load on the web server while data is being
 accessed from the hard disk. This will provide better performance on the hosted web pages and also
 lengthen the life of the hard disk.

	 As an added benefit, a proxy server can also act as a cache server, storing the information requested

by a client, such that when it, or other clients, request the same information, the proxy then serves the

information from its own cache without having to access the remote server. This saves on bandwidth.

2.5.8	 Files & Print Server

	 Background description:

	 File & print servers allow the sharing of resources within a networked environment. A file server

consolidates data storage into a centrally managed storage system, allowing easier maintenance,

backup and upgrading. A print server allows multiple clients to share printers. Further, print servers can

additionally have the capabilities to allow and restrict access to printers, and keep an audit of printer

usage.

SAMBA

Description

•	 SAMBA is a file and print server for Windows clients using SMB or CIFS.
•	 It is the link between Windows and Linux machines. With SAMBA, files and printers can be shared on
 these two different OS.
•	 It is being actively developed by a global team of about 30 active programmers and was originally
 developed by Andrew Tridgell.

Reference •	 http://www.SAMBA.org/

Rationale for
selection

•	 SAMBA is the most widely used software to enable printer and file sharing between UNIX and Microsoft
 Windows environments.
•	 It can act as a PDC (Primary Domain Controller) for Microsoft Windows machines.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 SAMBA allows Windows and UNIX machines to coexist and share files.
•	 It can be implemented to replace Windows Domain Controllers for file and printer sharing, and
 authentication.

26

NFS

Description

•	 NFS is a networked file system making the filesystem on a remote system accessible on the local system.
 From a user’s perspective, an NFS-mounted filesystem is indistinguishable from a filesystem on a directly-
 attached disk drive.
•	 Also considered to be the UNIX equivalent of the Server Message Block (SMB) protocol.
•	 The original version was developed by Olaf Kirch and Alan Cox. The version 3 server code was solidified by
 Neil Brown, based on work from other developers. It is now in version 4.

Reference •	 http://nfs.sourceforge.net/nfs-howto/

Rationale for
selection

•	 Fast, seamless sharing of files over the network. Similar in features to SAMBA.
•	 The advantage of NFS today is that it is mature, standard, well understood, and supported robustly across

a variety of platforms.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 NFS allows different Operating Systems to share files.
•	 It can be implemented together with SAMBA to provide filesystem access to users of the network.

CUPS

Description

•	 The Common Unix Printing System (CUPS) is a modularized computer printing system for Unix-like
 operating systems that allows a computer to act as a powerful print server.
•	 A computer running CUPS is a host which can accept print jobs from client computers, process them, and
 send them to the appropriate printer.
•	 Originally created by Easy Software Products , it is available on all GNU/Linux and BSD type operating
 systems

Reference •	 http://www.cups.org/articles.php

Rationale for
selection

•	 CUPS is a widely used printing system
•	 CUPS provides both the System V and Berkeley printing commands so the traditional methods of printing
 files can be used for CUPS.
•	 The CUPS server itself runs a web server administration interface, so configuration is a relatively simple
 task.
•	 The primary advantage of CUPS is that it is a standard and modularized printing system that can process
 numerous data formats on the print server.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 CUPS can be used in a heterogeneous computing environment.

2.5.9	 Backup Server/Tool

	 Background description:

	 Any organisation requires a backup policy to ensure that critical data and applications are protected

from system and infrastructure failure. The use of a backup server allows automated execution of this

backup policy.

27

28

Amanda

Description

•	 Amanda, the Advanced Maryland Automatic Network Disk Archiver, is a backup system that allows the
 system administrator to set up a single master backup server to back up multiple hosts to a single large
 capacity tape drive.
•	 It was originally written by James da Silva while at the University of Maryland’s Computer Science
 Department.
•	 Today, AMANDA is completely maintained by a volunteer group, including a user community that provides
 most of the support.

Reference •	 http://www.amanda.org/

Rationale for
selection

•	 It is able to backup multiple servers on a network.
•	 It can use SAMBA to backup windows servers.
•	 It supports various backup devices, from hard disks to multi-tape libraries.

Limitations •	 Does not have a native Windows agent to facilitate backup from Windows machines.

Implementation
Scenario Example

•	 Amanda backup server can be used to backup files of data centers.
•	 It was initially designed for UNIX and UNIX-like systems, with the ability to backup Windows machines
 reliant on the use SAMBA.

2.6	 Network Security

2.6.1	 Firewall

	 Background description:

	 A firewall is a program that resides at a network gateway server or external access point that protects

the internal network from malicious users or packets from other networks.

iptables

Description
•	 iptables is a firewall included in the Linux kernel version 2.4. and above.
•	 iptables is maintained by netfilter.org.

Reference •	 http://www.netfilter.org/

Rationale for
selection

•	 iptables is able to do packet filtering, network address translation and other packet mangling.
•	 It is able to add functionality by adding extensions.
•	 It allows the creation of meta-rules to reduce the complexity of configuration.
•	 It also has the ability to act as a bandwidth manager.
•	 iptables is one of the most robust, and modern firewalls available today.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 In most cases it is implemented on network gateways.
•	 It can also be implemented at various nodes in a network infrastructure to control flow of data across the
 network.

ipfilters

Description

•	 ipfilter (commonly referred to as ipf) is a software package that can be used to provide network address
 translation (NAT) or firewall services.
•	 IPFilter comes as a part of FreeBSD, NetBSD and Solaris 10. It can also run on GNU/Linux with kernel
 2.4 and above.
•	 Author and maintainer is Darren Reed.
•	 ipfilter is able to explicitly deny/permit any packet from passing through.

29

IPFW

Description

•	 IPFW is a FreeBSD sponsored firewall software application.
•	 It uses the legacy stateless rules and a legacy rule coding technique to achieve what is referred to as
 Simple Stateful logic.
•	 IPFW is included in the basic FreeBSD install as a separate run time loadable module.
•	 IPFW is authored and maintained by FreeBSD volunteer staff members.

Reference •	 http://www.freebsd-howto.com/HOWTO/Ipfw-HOWTO

Rationale for
selection

•	 IPFW is targeted at the professional user or the advanced technical computer hobbyist who have advanced
 packet selection requirements.
•	 It is the user interface for ipfirewall and is also used as a tunnel shaper.
•	 IPFW is similar to ipfilter but has advanced capabilities.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 It can also be implemented at various nodes in a network infrastructure to control flow of data across the
 network.

2.6.2	 Network Intrusion Detection System (IDS)

	 Background description:

	 Network IDSes often act as a forensic tool for analysing network breaches. This is achieved by

intercepting traffic entering and leaving the network, and analysing the packet headers and payloads. It

requires active monitoring as well as constant updating of signatures to be effective.

Snort

Description •	 Snort is a open source network intrusion detection system, capable of performing real-time traffic analysis
 and packet logging on IP networks.

Reference •	 http://www.snort.org/

Rationale for
selection

•	 Snort has 3 distinct modes; sniffer, packet logger and intrusion detection.
•	 It uses ACID (Analysis Console for Intrusion Databases) as a GUI reporting tool.
•	 It has third-party GUI interfaces as well.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 The easiest way to implement Snort is by installing it at the gateways within a network.
•	 It can also be installed behind the firewall as a second-level detector of network breaches.

ipfilters [cont’d]

Reference •	 http://coombs.anu.edu.au/~avalon/ or http://www.ipfilter.org

Rationale for
selection

•	 Distinguish between various interfaces.
•	 Provide packet header details to a user program for authentication.
•	 In addition, supports temporary storage of pre-authenticated rules for passing packets through.
•	 ipfilter is one of the most robust, and modern firewalls available today.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 In most cases it is implemented on the network perimeter.
•	 It can also be implemented at various nodes in a network infrastructure to control flow of data across the
 network.

30

2.6.3	 Virtual Private Network (VPN)

	 Background description:

	 VPNs serve to reduce the cost of having secure internal network communications across geographically

dispersed locations. Instead of having expensive dedicated leased-lines, an organisation can construct

secure “tunnels” across the Internet, using strong encryption.

OpenVPN

Description •	 OpenVPN is a newer generation VPN in that it is based on SSL as the underlying security mechanism.

Reference •	 http://openvpn.net/

Rationale for
selection

•	 OpenVPN works on many different operating systems, including Linux, *BSD, Mac OS X and Windows.
•	 It supports for dynamic IP addresses and NAT.
•	 It fully supports OpenSSL PKI.
•	 It uses an industrial-strength security model designed to protect against both passive and active attacks.
•	 It has been rigorously designed and tested to operate robustly on unreliable networks.

Limitations •	 No known limitations exist.

Implementation
Scenario Example

•	 OpenVPN can be implemented in bridging or routing mode. Both modes have advantages and
disadvantages.

•	 A discussion on the two modes can be found at http://openvpn.net/faq.html#bridge1
•	 It is often installed between static remote machines.
•	 It can also be installed to accommodate users who are often traveling, but yet need to be connected to

their internal network.

2.6.4	 Anti-virus

	 Background description:

	 Anti-virus software is designed to protect users from malicious programs such as viruses, trojans and

worms.

CalmAV

Description
•	 ClamAV is an anti-virus toolkit for UNIX, designed for e-mail scanning on mail gateways.
•	 It provides a flexible and scalable multi-threaded daemon, a command line scanner, and an advanced tool

for automatic database updating via the Internet and the virus signature database is kept up to date.

Reference •	 http://clamav.net/

Rationale for
selection

•	 ClamAV supports all popular operating systems such as Linux, BSD, MS Windows, AIX, Solaris & MacOS X.
•	 It supports on-access scanning (Linux and FreeBSD only).
•	 It detects over 30000 viruses, worms, and trojans, including Microsoft Office and MacOffice macro viruses.
•	 It scans within archives and compressed files.
•	 It has auto update on the virus database.

Limitations •	 ClamAV does not disinfect infected files.

Implementation
Scenario Example

•	 ClamAV is mostly used together with a mail transport agent (MTA) or any mail scanner to act as a mail
gateway.

•	 It can also be used as virus scanner on the desktop.

31

2.6.5	 Anti-spam

	 Background description:

	 Anti-spam software is designed to detect and eliminate spam emails.

SpamAssassin

Description
•	 SpamAssassin is a mail filter which attempts to identify spam using a variety of mechanisms including text

analysis, Bayesian filtering, DNS blocklists, and collaborative filtering databases.
•	 These tests are applied to email headers and content to classify email using advanced statistical methods.

Reference •	 http://spamassassin.apache.org/

Rationale for
selection

•	 SpamAssassin is widely used in all aspects of email management.
•	 It has a modular architecture that allows other technologies to be quickly wielded against spam and is

designed for easy integration into virtually any email system.
•	 Its practical multi-technique approach, modularity, and extensibility continue to give it an advantage over

other Anti-spam systems.
•	 It is ready in use in both email clients and servers, on many different operating systems, filtering incoming

as well as outgoing email.
•	 It has been shown to produce around 0.9% false negatives (spam that was missed) and around 0.1% false

positives (incorrectly marked as spam).

Limitations
•	 On accuracy, SpamAssassin typically differentiates successfully between spam and non-spam in between

95% and 100%.

Implementation
Scenario Example

•	 SpamAssassin is mostly used together with mail transport agents (MTA) or any mail scanner to act as a
mail gateway.

3	 RECOMMENDATIONS FOR INFORMATION ACCESS

3.1	 Overview

	 Information Access within MyGIFOSS covers components and technical specifications which are not

specified in, or have not been considered under, MyGIF v1.0. MyGIFOSS takes precedence over MyGIF

for OSS implementations.

	 Information Access covers components and technical specifications required to enable users to access

Public Sector information and services electronically via a range of delivery channels (e.g. World Wide

Web) and devices (e.g. personal computers, mobile phones, PDAs). Interoperability components covered

in the Information Access area include:

Hypertext Web Content;

Document;

Spreadsheet;

Presentation;

Graphical Image;

Moving Image and Audio / Visual Content;

Audio / Video Streaming;

Animation;

Mobile Devices Content;

Character Sets and Encoding;

Compression; and

Client-Side Scripting.

	 It should be noted that standards can, and do, evolve. In addition, standards are also created and

	 deprecated continuously. Therefore, the standards defined here are non-exhaustive, and will be 		

constantly updated.

3.2	 Recommended Standards / Specifications

3.2.1	 Hypertext Web Content

	 Hypertext Web Content standards are required to specify the development and formatting of hypertext

documents for presentation on browsers via a range of delivery channels including Internet and

Intranet.

	 Recommended standards and specifications are as defined in MyGIF.

3.2.2	 Document

	 Standards on Documents are required to define the format and file types of documents for interchange

between agencies and departments as well as third parties.

n

n

n

n

n

n

n

n

n

n

n

n

32

33

	 Recommended standards/specifications:

	 n	 OASIS Open Document Format for Office Applications v1.0

	 Other recommended standards and specifications for documents are as specified in MyGIF, with the

exception of the Microsoft Office Word Document (.doc) format. This is because the format is not fully

portable to other platforms and word processing software.

OpenDocument Text Format (.odt)

Description
•	 The OpenDocument Text Format is part of the OpenDocument for Office Applications standard, specifically

aimed at word processing.

Reference •	 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

Rationale for
selection

•	 The standard defines an XML schema which is well documented and published.
•	 It is friendly to transformations using XSLT or similar XML-based tools.
•	 OASIS has submitted the OpenDocument Format OASIS Standard to the ISO/IEC JTC1 (International

Organization for Standardization International Electrotechnical Commission’s Joint Technical Committee)
for further approval as a de jure standard.

•	 It has the ability to open and write to Microsoft Word .doc formats 97/00, 95 and 6.0.

Limitations •	 Incompatibilities with Microsoft Word may exist (due to newly introduced proprietary features by Microsoft).

3.2.3	 Spreadsheet

	 Standards on Spreadsheet are required to define the format and file types of spreadsheets for inter	

change between agencies and departments as well as third parties.

	

	 Recommended standards / specifications:

	 n	 OASIS Open Document Format for Office Applications v1.0

	 Other standards and specifications for spreadsheets are as specified in MyGIF, with the exception of

	 the Microsoft Office Excel Spreadsheet (.xls) format. This is because the format is not fully portable

	 to other platforms and spreadsheet software.

OpenDocument Spreadsheet Format (.ods)

Description
•	 The OpenDocument Spreadsheet Format is part of the OpenDocument for Office Applications standard,

specifically aimed at word processing.

Reference •	 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

Rationale for
selection

•	 The standard defines an XML schema which is well documented and published.
•	 It is friendly to transformations using XSLT or similar XML-based tools.
•	 OASIS has submitted the OpenDocument Format OASIS Standard to the ISO/IEC JTC1 (International

Organization for Standardization International Electrotechnical Commission’s Joint Technical Committee)
for further approval as a de jure standard.

•	 It has the capability to read and write other file formats including Microsoft Office Excel .xls (97/00, 95,
5.0).

3.2.4	 Presentation

	 Standards on presentation are required to define the format and file types of presentation for 		

interchange between agencies and departments as well as third parties.

	

	 Recommended standard / specifications:

	 n	 OASIS Open Document Format for Office Applications v1.0

	 Other standards and specifications for presentations are as specified in MyGIF, with the exception

	 of the Microsoft Office Powerpoint (.ppt) format. This is because the format is not fully portable to

	 other platforms and presentation software.

34

OpenDocument Presentation format (.odp)

Description
•	 The OpenDocument Presentation Format is part of the OpenDocument for Office Applications standard,

specifically aimed at word processing.

Reference •	 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

Rationale for
selection

•	 The standard defines an XML schema which is well documented and published.
•	 It is friendly to transformations using XSLT or similar XML-based tools.
•	 OASIS has submitted the OpenDocument Format OASIS Standard to the ISO/IEC JTC1 (International

Organization for Standardization International Electrotechnical Commission’s Joint Technical Committee)
for further approval as a de jure standard.

•	 It has the capability to read and write other file formats including Microsoft Office Excel .xls (97/00, 95, 5.0).

Limitations •	 Formatting data may be lost when converting to/from Microsoft Powerpoint.

3.2.5	 Graphical Image

	 Standards on graphical images are required to define the format and files types of graphics and still

images for interchange between agencies and departments as well as third parties.

	

	 Recommended standards and specifications are as contained within MyGIF with the following

additional information and format additions:

OpenDocument Spreadsheet Format (.ods) [cont’d]

Limitations

•	 Features unique to Excel 97/2000/XP may not be displayed the same way in OpenOffice. For instance,
a workbook that contains preformatted spaces in Microsoft Excel may show up but the spaces might be
different.

•	 Interpretation of formula can be different between .odc and .xls files, though this is increasingly rare.
•	 Visual Basic macros that use commands new to Excel 2000 and XP may result in execution errors when

run in OpenOffice.

35

Graphic Interchange Format (.gif)

Description •	 Graphic Interchange Format (GIF) is one of the most common formats for graphics images on the Web.

Reference
•	 GIF v89a is a standard defined by CompuServe Incorporated and available at: http://www.w3.org/

Graphics/GIF/spec-gif89a.txt

Rationale for
selection

•	 Graphic Interchange Format is a de-facto standard widely supported by browsers and the majority of image
processing, graphics design, photo processing and scanner accessory software.

•	 It is natively supported by Mozilla, Firefox and Konqueror.
•	 It can be animated.
•	 Formerly had a patent on its compression algorithm, but has since expired (June 2003).

Limitations •	 GIF only provide 256 color patterns.

Tag Image File Format (.tif)

Description

•	 Tag Image File Format (TIFF) was developed by Aldus and Microsoft Corp, and the specification was
owned by Aldus, which in turn merged with Adobe Systems, Incorporated. Consequently, Adobe Systems
now holds the Copyright for the TIFF specification.

•	 TIFF is a common format for exchanging raster graphics (bitmap) images between application programs. It
is a de-facto standard of particular benefit for images that will not tolerate information loss.

Reference •	 TIFF version 6 specification is available at http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf

Rationale for
selection

•	 TIFF is a de-facto standard of particular benefit for images that will not tolerate information loss.
•	 Version 6 is the current version and a matured standard. It was published in June 1992.
•	 It is widely supported by browsers through freely-available plug-ins and the majority of image processing,

graphics design, photo processing and scanner accessory software.
•	 Formerly had a patent on its compression algorithm, but has since expired (June 2003).

Limitations •	 No known limitations.

	 n	 Joint Photographic Experts Group (.jpg)

	 n	 Graphic Interchange Format (.gif)

	 n	 Tag Image File Format (.tif)

	 n	 Portable Network Graphics (.png)

	 n	 XpixMap(XPM) (.xpm)

Joint Photographic Experts Group (.jpg)

Description •	 Joint Photographic Experts Group (JPEG) is an ISO graphic image file format standard (ISO918).

Reference •	 http://www.jpeg.org/

Rationale for
selection

•	 JPEG standard is widely supported by browsers and the majority of image processing, graphics designing,
photo processing and scanner accessory software.

•	 It is a mature standard – originally ratified in 1994 and is natively supported by Mozilla, Firefox and
Konqueror.

•	 It is capable to save images with millions of colors.

Limitations
•	 The JPEG format is under patent litigation threat by a company called Forgent Networks, for its

compression algorithm. However, many commercial providers of applications and devices which use JPEG
have licensed the patent.

Portable Network Graphics (.png)

Description
•	 Portable Network Graphics (PNG) is an extensible file format for the lossless, portable, well-compressed

storage of raster images.

Reference •	 http://www.libpng.org/pub/png/pngintro.html/

Rationale for
selection

•	 For the Web, PNG has three main advantages: alpha channels (variable transparency), gamma correction
(cross-platform control of image brightness), and two-dimensional interlacing (a method of sieve display).

•	 For image editing, either professional or otherwise, PNG provides a useful format for the storage of
intermediate stages of editing.

•	 It is supported by most browsers, with the most notable exception being the proprietary web browser, Internet
Explorer – it does not support PNG without external plugins.

Limitations •	 No known limitations.

XpixMap (.xpm)

Description
•	 XPixMap (XPM) consists of an ASCII image format and a C library.
•	 The format defines how to store color images (X Pixmap) in a portable and powerful way.

Reference •	 http://koala.ilog.fr/lehors/xpm-README.html

Rationale for
selection

•	 While XPM is not an X Consortium standard, it is already a de-facto standard. This has been used widely by
both commercial and non-commercial developers.

•	 This is the format of choice when simplicity is required.

Limitations •	 No known limitations.

3.2.6	 Moving Image And Audio / Visual Content

	 Standards on Moving Image and Audio/Visual contents are required to define the compressed

	 format and file types of audio/visual content such as movies, for interchange between agencies and 	

departments as well as third parties.

	 Recommended standards and specifications are as defined in MyGIF.

3.2.7	 Audio / Video Streaming

	 Audio/Video Streaming Standards on Audio/Video Streaming are required to define the formats

	 and file types streaming audio/video content such as web casts and web seminars, for interchange

	 between agencies and departments as well as third parties.

	 Recommended standards / specifications:

	 n	 Helix DNA

	 n	 VideoLAN

36

3.2.8	 Animation

	 Animation standards are required to define the applications and formats to be used for the inter

	 change of animated content between agencies and departments as well as third parties.

	

	 Due to the lack of mature OSS animation formats, standards and specifications as defined within

	 MyGIF can be used. Users are however advised to use publishing software which provide players

	 that are available on OSS platforms, for e.g. Macromedia’s Flash.

3.2.9	 Mobile Devices Content

	 Mobile Devices Content Standard on Mobile Device Content is required to define the format of

	 content for presentation on mobile devices such as mobile phone and PDAs.

	 Recommended standards and specifications are as defined in MyGIF.

3.2.10	Character Sets And Encoding

	 Character Sets and Encoding standards define the character sets to be used for content to be

	 interchanged in English or Malay, as well as how those characters are to be encoded.

	 Recommended standards and specifications are as defined in MyGIF.

37

VideoLAN

Description

•	 VideoLan is a cross-platform media server and player.
•	 It started as a student project at the French École Centrale Paris, then released under the GPL.
•	 The VideoLan server can stream MPEG-1, MPEG-2 and MPEG-4 files, DVDs, digital satellite channels,

digital terrestrial television channels and live videos on the network in unicast or multicast.

Reference •	 http://www.videolan.org/

Rationale for
selection

•	 It supports wide range of audio/video formats and codecs.
•	 Available on multiple operating systems.

Limitations •	 No known limitations.

Helix DNA

Description

•	 Helix DNA is an open multi-format digital media platform, intended to accelerate the development and
deployment of digital media applications of any media, on any device, over any network, on any operating
system and created in any development environment.

•	 Helix originated from Real Networks’ Real Audio/Video streaming server and player. It was made open
source by Real Networks in 2003.

Reference •	 http://helixcommunity.org/

Rationale for
selection

•	 The Helix DNA system supports multiple media formats, including Real Media, Windows Media and
Quicktime.

•	 The Helix Server and Player are cross-platform with clients across all major operating systems.

Limitations •	 No known limitations.

Zip (.zip)

Description
•	 Files in a zip file are compressed so that they take up less space in storage or take less time to send to

someone.

Reference •	 Zip specification is available at: http://www.pkware.com/products/enterprise/white_papers/appnote.htm

Rationale for
selection

•	 Zip is the de-facto standard for file compression.
•	 It is a global, matured and widely adopted standard. It was introduced in 1989.
•	 It is supported on a range of operating systems including Linux, BSD, UNIX and Windows. Extractors are

freely available.

Limitations •	 No known limitations.

GNU Zip (.gz) v4.3

Description
•	 GZIP (GNU zip) is a compression utility.
•	 It has been adopted by the GNU project and is popular on the Internet.

Reference
•	 GZIP is an IETF standard defined by RFC 1952 “GZIP file format specification version 4.3”: http://www.

gnu.org/

Rationale for
selection

•	 GZIP is a commonly utilized file compression format.
•	 It is supported on a range of operating systems including DOS, UNIX and MacOS. It can be extracted on

Windows operating systems using the freely available WinZip utility.

Limitations •	 No known limitations.

bzip2 (.bz2)

Description
•	 bzip2 is another file compression utility.
•	 The bzip2 utility are newer than gzip and is not as common yet, but it is rapidly gaining popularity.

Reference
•	 Information on the use of this type of compression can be obtained at: http://www.linuxheadquarters.

com/howto/basic/bz2.shtml

Rationale for
selection

•	 The bzip2 utility is capable of greater compression ratios than gzip.
•	 Therefore, a bzip2 file can be 10-20% smaller than a gzip version of the same file. Usually, files that have

been compressed by bzip2 will have a .bz2 extension.
•	 The use of this format of compression is compatible with a wide range of Operating System such as Linux,

Windows and UNIX.

Limitations •	 No known limitations.

38

3.2.11	Compression

	 Compression is required to define the applications and format to be used for compressing files for

	 interchange in between related parties.

	 Recommended standards / specifications:

	 n	 Zip

	 n	 GNU Zip

	 n	 Bzip

39

3.2.12	Client-Side Scripting

	 Client-side scripts are programs written and attached or embedded to HTML documents in a manner

independent of the scripting language. The scripts add interactivity and program logic to browser-

based content, for instance, provide runtime validation of form field contents by responding to a user’s

mouse action with the execution of program to validate user input. It reduces server load by transferring

some of the processing of the program to be handled locally at client.

	

	 Standard on client-side scripting is required to ensure consistency on the scripts implementation at

different browsers, in particular, the dominant browsers such as Firefox, Mozilla, Konqueror, Microsoft IE

and Netscape Navigator.

	 Recommended standards and specifications are as defined in MyGIF.

40

41

P A R T B

4	 IMPLEMENTATION GUIDELINES: MANAGEMENT PERSPECTIVE

	 Using OSS creates new challenges to be addressed. On the other hand it also gives opportunities to

re-engineer your IT System. OSS allows a paradigm shift from the conventional methods of IT services.

It is a move away from a product oriented industry to a service oriented Industry. What managers should

be asking themselves are: how to ensure interoperability of their system; how to support mobile users;

how to securely identify remote users and how to build a manageable IT system. OSS installation cost

is minimal or almost none. However, the main issue is support, and that is why IT managers should

understand the dynamics of Open Source and realize the importance of community involvement into

getting support from vendors and open source communities. This chapter assists IT managers who are

planning for an implementation or a migration project in OSS.

4.1	 Key Success Factors

	 The following are critical for the successful implementation of an OSS project:

	 I.	 Understanding the reasons to migrate before starting the Project

		 The need for open standards in electronic government, standardization for data exchange, the

higher level of security in OSS, the elimination of vendor lock-in and forced upgrades by vendors

and lower cost are some of the reasons to change to OSS.

		 IT managers should therefore internalise the reasons for their migration and analyze whether it

is aligned with their goals and objectives.

II.	 Acquiring positive support from IT staff and users throughout the project

		 In any move from the norm, support is important. Hence, IT managers should gather all the

support for an OSS implementation to be successful. This primarily concerns users and IT staff,

since they are the ones who will be evaluating, applying and using OSS.

III.	 Obtain top management commitment as owners of the project and championing the

change

		 Top management plays the biggest role in change. Acquiring top management support and

guidance will assure continuous commitment to the project. This will also assure sufficient

human resources, funding and training.

IV.	 Building relationship and expertise with other OSS movements

		 OSS development are largely community driven, though increasingly with vendor involvement

and support. Therefore, it is beneficial to be involved in the community, since this will give an

43

44

insight into the software development cycle, as well as allow close communications. This will

result in greater internal expertise, and better support from the community and vendors.

V.		 Develop an initial proof of concept

		 Depending on the reasons to migrate to OSS, it may be important to first aim small by targeting

achievable goals on pilot projects. As a proof of concept, this will reinforce your business case

in your overall OSS planning. This will also help in providing assurance to sceptics when moving

to the actual implementation later.

VI.	 Manage each step of implementation to assure viability

		 Planning must cover areas such as cost analysis, change management, human resource

management, training, and benefit validation and realization.

		

		 Based on the above areas, manage the implementation with proactive and reactive measures so

that the viability of the implementation can be assured.

4.2	 Challenges

	 While implementing an OSS project, an IT manager may face multiple challenges that might jeopardise

the project. These challenges can possibly be less potent over time as they are mitigated by positive

actions from the OSS communities, vendors and other involved parties.

		 However, the following are items that a manager should be aware of as potential challenges:

No Area Challenges Faced

1 Technology

•	 The perception of OSS security & authentication needs to be addressed.
•	 Requirement for upfront investment to be provided for initial OSS implementation.
•	 Dependency on applications from proprietary IT companies makes it difficult to implement alternatives,

resulting in vendor lock-in.
•	 Limited or non-existence of readily available OSS equivalent solutions to meet some business needs.
•	 Non-OSS compliant IT peripherals (printer, scanner).
•	 Lack of specific off-the-shelf OSS-based applications especially for education.
•	 Interoperability and incompatibility of current data and file formats.

2 Human

•	 Resistance to change among users.
•	 Lack of management buy-in.
•	 Insufficient number of in-house skilled personnel in OSS for technical support.
•	 Limited external technical support (both for developers and users) available for the development and

deployment of OSS solutions.
•	 Lack of an active OSS community within the organisation.

3
Policies and
procedures

•	 Lack of OSS proponents in the tender evaluation process at the agency level.
•	 Lack of understanding of the concepts of Intellectual Property, specifically Copyright, Patents and

Trademarks give rise to confusion with regards to the legal standing of OSS.

45

4.3	 Project Management Of An OSS Implementation

	 IT Managers should consider the following factors:

No Phase Description Considerations

1
Data gathering and
project definition

Sets of relevant initial conditions
(Current environment)

System Architectures

Application and data associated with it

Protocol and standard used

Hardware Used

Physical Infrastructure like location, networks, bandwidth

Set of target Condition

System Architectures

Applications and data associated with it

Protocols and standards used

Hardware Used

Physical Infrastructure like location, networks, bandwidth

Implementation Method
Project methodology

Project life cycle

2
Justification of OSS

Project

Tangible benefit for
implementation

Cost associated to project

Ease of Operations

Free from Vendor lock-in

Intangible benefit for
implementation

Cost associated to project

Ease of Operations

Free from Vendor lock-in

3 Pilot Testing
One or more pilots of the project

can be implemented

Consider the cost in the model and apply it in the whole project
plan

Consider the time line and resources used in the pilot projects and
feed the variables into the overall project implementation

4 Project Plan Roll Out

Follow on with the project
implementation after

modifications from the Pilot
Testing Phase

Consider whether the scaling of the project from pilot to roll
out is realistic and make adjustments and accommodations, if
necessary

Table 4.1: Potential Challenges in Implementing OSS

No Area Challenges Faced

4 Organisations

•	 Lack of awareness, understanding and confidence in Open Source initiatives at all levels in the
organization.

•	 Mindset and cultural acceptance of OSS needs to be addressed at all levels in the organization.
•	 Lack of R&D initiatives, incentives and recognition programmes for the internal IT personnel and OSS

community.
•	 Collaboration efforts among organisations to spur knowledge sharing are not fully optimised.

5 Other Factors

•	 Inadequate allocation of budget and funds.
•	 Lack of studies on benefits and new products available in OSS.
•	 Ready availability of pirated software and lack of enforcement allows the use of illegally obtained

copies within the organisation.

4.2	 Challenges [cont’d]

46

Table 4.2: Considerations for OSS Project Management

4.4	 Notes For Migration

	 For successful migration to OSS, it is advised that the following guidelines are followed:

I.	 Steering committee

	 A steering committee comprising relevant senior management personnel from all relevant

departments should be formed. The committee will provide guidance and direction for the

implementation.

II.	 Understanding the target environment

	 OSS software and the base architectures should be fully understood, and options of variations

and choices available should be analyzed. Usually this requires the training of the existing work

force, acquisition of new staff with new skill sets or using outside expertise. Here is where

management support is important since a considerable amount of investment must be done.

	 III.	 Opportunity to re-engineer the current system

		 Multiple approaches in implementing a system creates opportunities to re-engineer the current

base architecture and its software applications. Consider an appropriate approach to centralized

or decentralized management control. However, careful considerations should reflect cost related

to such changes.

	 IV.	 Understand OSS

	 There are a few factors that need to be understood before OSS migration. After sufficient

knowledge about OSS is obtained and understood, only then considerations about OSS can be

made properly. These factors are, for example:

	 a.	 The implications of OSS licenses, should the project owner make changes to the original

source code and wishes to distribute it.

		 b.	 The advantages and disadvantages of various flavours of an application to be implemented.

No Phase Description Considerations

5 Monitor

Keep monitoring throughout
the project changes and

discrepancies with respect to the
original plan

Consider a plan that are more flexible and capable of changing to
unforeseen circumstances

4.3	 Project Management Of An Oss Implimentation [cont’d]

	 c.	 The various distinct characteristics of Open Source distributions and the vendor support that

it provides.

	 d.	 The level of support that exist for a particular OSS application. For example, commercial,

community or third-party vendor support.

	 V.	 IT system environment scanning

	 Audit the current system to formalize a precise cost analysis for a business case. Data gathered

should be for the following:

	 	 A.	 Application requirements

			 i.	 Application name, Vendor Name, Version Number and Contact Person.

			 ii.	 The number of users using the application.

	 iii.	 The operating system used and alternative to using other OS or possibility of work-around

with OSS.

	 iv.	 Application prerequisites on the client-side, server side as well as middle-ware to support

the application.

			

			 v.	 Hardware requirements of the application.

	 vi.	 Communication protocol and data access methods for the applications to work with other

applications.

			 vii.	 File format used by an application.

			 viii.	Localization and internationalization requirements such as currency, language and time.

 	 	 B.	 Data requirements

	 This should include all data in the system such as file formats, information exchange format,

application format and protocols, databases and any other application that is interacting with the

computer system.

47

48

		 The analysis of the requirements should include considerations such as:

	 i.	 The need for interacting with the system by a third party organization or software

application.

		 ii.	 The requirements to persist on legacy applications due to critical data or historical data.

		 One of the way is to divide the data into the following categories:

		 i.	 Data of minimal importance and impact such that it can be thrown away.

		 ii.	 Data of critical importance and must be preserved either in its original form or translated to 	

		 an open standard form.

	 iii.	 Data of critical importance and must be preserved and maybe be only viewed by a proprietary

system.

			 The criticality of the data, and the need for external interaction would have an impact in the 	

		 cost for translating them, or in maintaining a proprietary application.

 	 C.	 Security requirements

		 i.	 The current system methods to handle authentication with users and passwords.

		 ii.	 The authentication structure as of name formats, conventions and others.

		 iii.	 Policy for user management, updates, adding and deletes.

	 iv.	 Requirement of other authentication systems that are more complex for example, thumb

printing, retina scan, signature identification and smart card requirements.

	 v.	 The IT policy regarding the use of Internet access like email, messenger, browser, peer-2-

peer file sharing and etc.

		 vi.	 Security requirements that are dependent on specific hardware or software vendor.

	

	

49

	 VI.	 Build a detailed business case

		 Based on the data from the system environment scanning, a detailed business case for migration

can be formulated and should at least consist of the following details:

	 a.	 PESTLE or SWOT analysis of the new environment compared to the existing and alternative

environments.

		

	 b.	 Total Cost of Ownership (TCO) projection over a reasonable period of time. This should

include the costs of data migration from existing applications, software acquisition, training,

support and maintenance. A 5 year plan is recommended but it is primarily determined by the

agency and their IT project life cycle.

	 c.	 A TCO projection if the current system is maintained, or migrated/upgraded to another

proprietary system. The factors used in the TCO projection should be the same as above,

within the same period of time.

		 d.	 Cost comparisons between the different TCO projections.

	 VII.	 Use a consultative process

	 Include all stakeholders in the migration, which means the management, IT implementation 	

personnel, end users and external vendors in the planning. This includes making them understand

the migration purpose and implications to the user. Furthermore, users’ concerns should be

taken seriously. This is important to assure smooth transition and early user involvement in the

project. Throughout the project, provide a help desk to accept concerns from users as well as

provide how-to’s to working solutions.

	 VIII.	 Start small

	 Implement a pilot project based on the business case for the migration. Consider achievable

targets with small number of users and small isolated cases. Apply any changes to the business

case where required. The pilot will provide:

		 a.	 Data to modify the TCO model.

		 b.	 Data to modify change management methods by analyzing user responses to the pilot.

		 c.	 Proof of concept for the business case.

	

50

	 IX.	 Determine the method and speed of migration

		 Usual options are:

	 a.	 Big bang

	 A big bang approach consists of a mass migration of all the users onto the new system with

little or no transition period. In certain cases, this can be the most cost efficient method, since it

would not require maintenance of the legacy system. However, this approach can involve a lot of

preparatory ground work and would require all data to be fully migrated and online first.

	 b.	 Phased transitions in groups

	 A more common approach is to partition the organisation into groups, for e.g. by divisions,

departments or work area. Usually, the IT department would be the first to migrate, since the

personnel would be the most comfortable working with computers. This would then be followed

by other departments or groups, for example Administrative, Accounting, Secretarial, Policy &

Planning, and so on.

	

	 This approach has the advantage of allowing for a more staged change management program. It

also allows early issues in the system to be ironed out.

	 c.	 User by user transition

	 This is the slowest and most resource intensive approach, since it entails implementing

the migration on a per user basis. This approach can prove to be unimplementable in large

organisations.

	 X.	 Promotion and communication

	 It is important that the users are aware of the roll-out throughout the organisation. Therefore,

sufficient promotion of the migration process needs to be broadcasted. Further, the affected

users must be constantly informed to the changes being undertaken within their organisation. By

utilising effective communication, users will be well informed and receptive of the changes.

	 XI.	 Monitor and obtain feedback

	 Any implementation may have oversights. It is then imperative that these are identified, and

rectified quickly. Further, users involved in the implementation would often have valuable

suggestions and ideas with regards to improving the implementation. Obtaining and acting on

these feedback ensures better results and more commitment from the users.

51

4.5	 Common Change Management Issues

	 A migration process involves change on several levels, not just at the computer systems and infrastructure.

Change management involves handling the challenges at all levels, especially people. The following

discusses some of these change management issues.

	 I.	 Fear of the unknown

	 Naturally, human beings dislike change or anything that is different from the norm. Trying out

something new like OSS will definitely cause some resistance from people who are adverse to

change.

	

	 This is where people management and communication skills are important, for a smooth transition

to occur. This can be done by listening carefully to people’s fears, and acting swiftly to calm those

fears.

	 II.	 Inertia

	 In some cases, there is no real fear of the unknown, but just a general unwillingness to accept

something new. This is mainly due to being comfortable with what is already available.

	 III.	 Opposition to change

	 Fear and inertia may cause users to resist change. It may also induce them to actively oppose

the change. This is especially difficult when those opposed to change are in a position to affect

the migration process. Therefore it is important to communicate to them the reasons behind the

migration and to convince them to actively support it instead.

	

	 IV.	 Less demand in job skill set

	 Almost all users are afraid of change, especially if they are required to be reskilled. Reskilling

of users would not be so difficult if the users believe that their newly acquired skill set would be

valuable in the future. However, OSS yet is not as popular as other proprietary products which

are already well established. This gives the perception to users that learning OSS can make

them less valuable. Management must handle this issue carefully and understand the pressure

and the concerns of the users. With the gaining popularity of OSS, this issue would gradually

lessen.

4.6	 Making The OSS Transition Easier

	 OSS introduction can be difficult both on technical and management point of view. Below are points

that could possibly make it easier for introducing OSS:

	 I.	 Take the least disruptive route first

	 Regardless of whether the implementation approach is a big bang, phased or on a per user

basis, the introduction of OSS into the organisation should be taken step-by-step. Hence, the

administration should start introducing OSS in areas which users are fairly familiar. Applications

like OpenOffice, Apache, Gimp and Mozilla Firefox are good examples of applications that can be

used in the early stages of introducing OSS since it has functionalities similar to their proprietary

counterparts and are mostly capable of running on various operating systems.

	

	 The next step is to introduce least disruptive applications and servers. These are applications like

DNS servers, DHCP servers, FTP servers, LDAP servers, mail servers and other applications that

are almost transparent to the users in the system.

	 II.	 Technical consideration

	 Looking ahead is essential to avoid making decisions that would be difficult to undo later.

Therefore, there are several factors which the implementation team should consider before

rolling out to avoid major stumbling blocks in the future.

Recommended Discouraged

Web development done today are compliant with most browsers.
Essentially, web development should follow W3C standards. Tools
like weblint can help test web pages for compatibility.

The use of Vbscripts, active-X and scripts that are platform specific
to be used in Web development. This is because those languages
and tools create applications that are not compatible with all
browsers.

Different ways to do specific functions on applications that require
the use of proprietary languages.

The use of Macros and VbScripts in documents like Microsoft
Excel and Microsoft Access. This is because those macros are not
fully portable and also can act as carriers for viruses.

Open standards for file formats, for example, OpenDocument. The use of proprietary file formats like Excel, Powerpoint, Word
and others that require a vendor specific application to be used.
This is because those formats are not fully portable.

Open standard protocols. Refer to Chapter 2 and Chapter 3 of
MyGIFOSS to look at open standard protocols and applications.

The use of proprietary protocols like proprietary encryption
protocols, communication protocols and messaging protocols. This
is because proprietary protocols tend to be platform specific and
non-portable

All new applications are written to be portable by using cross
platform languages like JAVA, Python, Perl and ANSI C.

Applications that can run on proprietary platforms only.

Table 4.3: Technical Consideration

52

No Item Yes/ No

1 Registration at the OSS Knowledge Bank

2 Attendance to the OSS Awareness program

3 Completed OSS Questionnaire

4 Availability of current environment:
• ICT environment
• ICT Governance
• ICT resources skills and expertise
• ICT Policies
• ICT Funding availability
• Implementation Constraints

5 Identified OSS Opportunities

6 Validated OSS Opportunities

7 Accurate assessment of the existing environment & OSS Opportunities

8 Technical Feasibility Check

9 Budgetary estimations and favourable Return on Investment (ROI) projections

10 ICT Governance Approvals, Selection and Award to Vendor / Internal Resources for Implementation

11 Detailed Implementation Plan

12 Availability of Training Plan

13 Availability of Change Management Plan

14 Availability of Risk Management Plan

15 Availability of separate development and testing environments

16 Availability of Data Centre planning

17 Availability of clear business and technical user requirements

18 Definition, selection and assessment of OSS technical environment related to:
• hardware
• software (OS and applications)
• tools inclusive of sources for signature updates for security
• transition strategy
• policies and procedures

19 Availability of skilled OSS resources

20 Availability of User Awareness

21 Availability of Technical and User training

22 Availability of Maintenance and Support processes and procedures:
• user support
• bug fixes and patches
• updates / upgrades

23 Realisation of Benefits

24 Show Case documentation deposited in Knowledge Bank

53

Table 4.4: OSS Consultation Implementation Checklist

III.	 OSS Implementation Checklist

	 A checklist on OSS implementation is provided below and should be filled up when constructing

your implementation plan.

54

5	 IMPLEMENTATION GUIDELINES: LEGAL AND TECHNICAL PERSPECTIVE

5.1	 Overview

	 The implementation guidelines contained herein addresses the issues of using OSS and proprietary

software within a heterogeneous environment, and technical guidelines for OSS implementation and

migration.

5.2	 Use Of OSS And Proprietary Software In A Heterogeneous Environment

	 Usage of mixed software within an operating environment can be looked at from two aspects:

	 I.	 Legal

	 From a legal perspective, usage of software are under the licensing terms and conditions of the

software – which governs the rights of the end user on the usage of the software. A full treatment

of the legal aspects with regards to software usage is beyond the scope of this document. However,

one specific legal scenario relating to the GNU General Public License is given here as a brief

example. This is discussed in Section 5.3.

	

	 The scenario discussed in the section is designed to provide IT managers with a general idea on how

licensing affects software implementation. The full implication of OSS licenses and implementation

scenarios are contained in the OSS Policy Handbook.

	 II.	 Technical

	 From a technical perspective, as long as the software is in a format which is understood by the

operating system and underlying hardware architecture, then there would be no difficulties in running

the software. The technical options for implementation, regarding the use of OSS and proprietary

software are discussed in Section 5.4.

5.3	 Licensing

	 The following two subsections discuss the use of software licensed under the GNU General Public

License with software under other licenses. This particular license is chosen as an example since it is

the one that generates the most questions with regards to usage, and is also the license for the Linux

kernel.

55

5.3.1	 Differences Between Modification And Usage Of Software

	 OSS licenses generally grant the user certain rights to using the software, which include the right to

use, modify and distribute the software. Certain licenses, for example the GNU General Public License,

impose certain obligations on the modification of the software. There are many interpretations on these

obligations, but the clearest one can be described as follows:

	 n	 The software can be modified and redistributed, provided the same rights granted to the modifier is

granted to the recipients. In other words, any code that modifies GPL code or includes GPL code, or

any portion of a GPL’d software, cannot be distributed outside your organisation under any license

other than the GPL.

	 n	 This particular obligation is restricted to modification only.

	 n	 Rights governing the usage of the software, i.e. running it, do not impose the same obligation as to

the distribution of the modified versions. This is an important distinction as will be made clear in the

discussion to follow.

5.3.2	 Example Scenario Of A Heterogeneous Software Environment

	 Consider the software stack example shown in Figure 5.1. It shows a typical example of an application

system, consisting of several subsystems. The lowest layer of the stack is the hardware, followed by the

operating system. It then increases in the levels of abstraction from the hardware layer to the highest

stack, which is the top application layer. This layer is the application that interacts with the user.

Figure 5.1 Example of a Software Stack

Top Application Layer

Supplemental App. Libraries (Toolkits)
Application

LibrariesAdditional Libraries (GUI, CLI, atc)

Core System Libraries

Operating System

Hardware

Middle Application Layer

1

2

3

4

5

6

7

	 On any layer of the stack (excluding the hardware layer), the software can be proprietary or OSS. There

are many scenarios to describe the interaction between the layers of software, but for illustration, a

single one is described here.

	 Consider a Linux-based operating system, as provided by a distribution vendor (erg. Red Hat, SuSE,

Debian, Slackware, etc.). Here, the operating system kernel (layer 6 above) is Linux, licensed under the

GPL. The main core library (layer 5) is the GNU C library, licensed under LGPL . The upper layers can

contain any number software, licensed under different licenses.

	 Next, consider the case of a proprietary database, which would slot in the middle application layer (layer

2). If the database is not linked (dynamically or statically) to any GPL’d (or similarly licensed) libraries,

and do not depend on any other GPL’d (or similarly licensed) software to run, then the database can

remain proprietary and closed source. Examples of databases that run on Linux which are proprietary

are:

	 i.	 Oracle Database

	 ii.	 IBM DB2

	 iii.	 SAP DB

	

	 Other scenarios can include the use of OSS within a proprietary operating system environment. For

example, the list below give a representation of OSS that run on the proprietary Microsoft Windows

operating system:

	 i.	 Apache Web Server

	 ii.	 Mozilla Web Browser

	 iii.	 OpenOffice Productivity Suite

	 The following subsections in this section go into further detail on the usage of OSS and proprietary

software.

	

	 In summary, the following points hold true:

i.	 Subject to the software’s licensing terms, running unmodified software in an heterogeneous

environment do not represent any obligations on the users to release the source code.

ii.	 Use of modified OSS within an organisation (in this case the Government of Malaysia) do not

represent any obligations on the users to release the source code. The obligations come into effect

should the software be distributed outside the organisation.

56

57

iii.	 The Government of Malaysia constitutes several different organisations which are legal entities in

their own right. For example, State governments are legally separate organisations to the Federal

government, and to each other. Therefore, the distribution of software from one state to another, or

to the federal government (and all other exchange permutations) will be considered as distribution

of the software. As such the obligations would apply.

5.4	 Technical Guidelines For Usage Of OSS

	 The following subsections discuss technical options for:

	 i.	 Proprietary applications which have an OSS equivalent,

	 ii.	 Proprietary applications which run in an OSS environment,

	 iii.	 Software which may be accessed by remote display,

	 iv.	 Software which will run under an emulator, and

	 v.	 Software which can be recompiled under OSS.

	 A large proportion of this discussion is based on the European Commission IDA Migration Guidelines

for OSS, which can be found at:

	 http://www.netproject.com/docs/migoss/v1.0/

	

	 The IDA Migration Guidelines also contains several migration scenarios which are very detailed, in

respect to the steps needed. The reader is encouraged to refer to the link above as an additional

supplement to this document.

5.4.1	 Proprietary Applications Which Have An OSS Equivalent

	 Some applications, for instance Microsoft Office, Lotus SmartSuite, Corel WordPerfect, Adobe

Framemaker, Quark Express and Adobe Photoshop, have equivalents which run natively under OSS,

including OpenOffice.org, Gnumeric, Evolution and The GIMP. In this case the OSS product needs to

be tested to ensure it provides the necessary functionality. Refer to Table 2.1 for examples of OSS

software within the categorised implementation and solution areas.

5.4.2	 Proprietary Applications Which Run In An OSS Environment

	 Some applications, such as Adobe’s Acrobat Reader, have a version which runs natively under OSS. If

there is no OSS alternative to the application, then all that is required is to ensure that all the required

features are implemented in the proprietary version. If there is an OSS alternative and a partial migration

58

is acceptable, then a choice has to be made based on the features offered by the proprietary and OSS

applications.

5.4.3	 Software Which May Be Accessed By Remote Display

	 Another approach is to run the applications on a server and transport the display to the desktop; this is

the thin client approach. Products like Windows Terminal Server, Citrix and Graphon allow applications

to run on a server running Windows in a multi-user way. This means that an application written to run

on the desktop in a single user mode may have to be altered to run under these products. This will not

be possible without source code, and third party vendors may not be willing to help.

	

	 A comparison of various terminal server products can be found at:

	 http://www.networkcomputing.com/technologies/infrastructure/showitem.jhtml?articleID=57703288

	 The most sophisticated of these products, Citrix, has its own line protocol, “ICA”, which is extremely

good, particularly with low bandwidth connections. It can run a server farm with load balancing and has

other useful facilities. There are free ICA clients which run under GNU/Linux.

	 All these products rely on proprietary closed source software and Citrix in particular is expensive. It

requires a Windows server license, a Citrix license and a Windows Terminal Server license if a non-

Windows client is used. In addition, Client Access Licenses will be needed for each desktop using

the software. The Citrix license is based on concurrent users, so this approach can be cost effective if

there are many users who need access to an application but where concurrent access is low. There are

documented case studies at http://www.citrix.com/press/news/profiles/ which show that the savings

of having thin client “disposable” desktops are sufficient to justify moving the applications to a server.

Citrix also has products to allow UNIX applications to be transported in the same way over ICA and

displayed on a thin client desktop.

	 Windows Terminal Server provides similar functionality to Citrix except that it uses its own protocol, RDP.

The GNU/Linux client for RDP, Rdesktop is good, but is still considered beta code by some. RDP used

to be very inefficient in comparison to ICA but the difference is now small if not negligible. Citrix has

a number of features like load balancing which make it the better choice for large scale installations

where the extra cost can be justified.

	 Both Citrix and Windows Terminal Server can introduce latency into the application if the servers are not

sized correctly and the network is not sufficiently fast.

59

	 Tarantella (http://www.tarantella.com/) sits on a server between the desktop and the application

servers. It aggregates output from Citrix on Windows and other applications running on UNIX and IBM

mainframes, and sends the result to a browser on the desktop. It uses its own proprietary line protocol,

AIP, which is apparently reasonable at low bandwidths. However, it increases latency because it sits

between the user and the application and therefore slows down the connection between the two.

	 As mentioned above, CodeWeavers now produce a server version of their CrossOver Office product.

This works by having the client securely connect to the central server and have an X session displayed

back to it. This means that the communication to the central server is encrypted and compressed

but also requires sufficient bandwidth to support it as it is based on X. No tests of the bandwidth

requirement have been made but it is likely to be greater than for ICA (Citrix) or AIP (Tarantella). VNC

is an OSS product developed by AT&T which is designed to display a user session running on another

machine. It consists of a server and client which are both available for Windows , UNIX and GNU/

Linux.

	 VNC allows applications to be run in one environment and the display to be run in another. It uses its

own open protocol, RFB, over TCP/IP, which is not as efficient as either ICA (Citrix) or AIP (Tarantella)

and so needs high network bandwidths (such as 100Mb/s) to work well. Unfortunately the Windows

VNC server is also not as efficient as the UNIX version and can require more processing power than one

would expect. VNC can be very useful for occasional systems administration use, allowing control of a

desktop to be taken by a central person. In these circumstances, high latency could be acceptable.

5.4.4	 Software Which Will Run Under An Emulator

	 If none of the above provides a way to run the application or a substitute then it may be possible to run it

natively, but with its normal operating environment being emulated on top of an OSS operating system.

A discussion of the issues relating to this approach can be found at:

	 http://www.linuxmednews.com/linuxmednews/967526746/index_html/

	 All of these techniques have license implications because they may involve running multiple copies of

the proprietary application and/or operating system. This section is most likely to apply to Windows

applications.

	

60

	 There are two types of emulation:

	 i.	 Hardware Emulation

	 Products like VMware and Win4lin provide hardware emulation. They allow a normal PC operating

system to run as a user-level application by mimicking Intel PC hardware in software interfaces and

thereby providing a virtual machine. This allows a legacy operating system and its applications to be

run on top of an OSS platform.

	 VMware is not strictly an emulator - it allows most instructions to pass straight through to the

processor, which means it will only run on an x86 architecture machine. It is the most complete

offering but it is proprietary and can consume a lot of machine resources.

	 Win4lin is similar to VMware, and is also a proprietary product, but is less expensive. It can be a good

solution in simple cases for example just running office applications. It is a component of the Lindows

product which is being sold on low cost hardware to home users. (Because it apparently does not

use unprivileged user accounts to maintain security, Lindows itself should not be recommended for

Administrations without careful consideration of the security implications.)

	 Because the hardware emulation approach requires full licenses for the proprietary operating system

and application, together with the cost of the emulator, it should be viewed as a way of running a

small number of legacy applications which are difficult to migrate.

	 There are VMware and Win4lin server products which can reduce licensing costs if the proprietary

software allows concurrent rather than potential user licensing.

	 There are OSS applications which will fully emulate an Intel IA-32 environment, for instance Bochs,

but they are probably not ready for GoM use yet. -- Not production ready.

	 ii.	 Software Emulation

	 Software emulation allows programs written for a proprietary environment to run directly on the OSS

operating system. Any system calls made by them are mapped onto the equivalent OSS system

interface. This means that a copy of the proprietary operating system is no longer necessary.

	 Wine allows applications written for Windows to run on GNU/Linux by providing software emulation.

The major problem Wine has to solve is the large number of Windows system calls (including bugs)

that it has to support.

61

	 OSS Wine code is available from http://www.winehq.org/ or from CodeWeavers at:

	 http://www.codeweavers.com/technology/wine/download.php/

	 CodeWeavers produce two proprietary products, CrossOver Office and CrossOver Plugin, which are

based on Wine and designed to support specific Windows applications. Although the products are

proprietary, code modifications are periodically contributed back to the OSS version of Wine.

	 CrossOver Office is designed to allow applications such as Office and Lotus Notes to run natively on

GNU/Linux. There are some outstanding issues but the product is in active development. However,

this approach may be appropriate for certain users depending on their requirements. CrossOver

Office is now also available as a server product which means that it doesn’t need to be fully installed

on the desktop and can provide similar functionality to Citrix.

	 CrossOver Plugin is designed to allow browser plugins that normally only run on Windows to run

in Netscape, Mozilla and Galeon on GNU/Linux. This product has been available for longer than

CrossOver Office and works very well.

	 Using these techniques removes the cost of the Windows operating system license but not the

application license. The application license needs to be scrutinized to make sure it doesn’t forbid

running the application without Windows. This restriction is used in some new Microsoft applications

as a lock-in tactic, although legal enforcement is questionable.

5.4.5	 Software Which Can Be Recompiled Under OSS

	 For applications written in-house or on behalf of the Government and for which source code is available,

the software can be ported to run on an OSS platform. In general, the problem of porting source code

in any language is not compilation but the code’s usage of system libraries including both the graphical

environment and operating system. This can mean a significant amount of manual intervention to

migrate the code. In addition, any assumptions about the underlying environment, such as file naming,

will make it necessary to either change the source code or replicate the environment, regardless of the

language used.

	 I.	 Java

	 If Java software has been written according to the Java specification then the program should run

without any problems. However, if any proprietary extensions have been used then the code will

have to be changed to use standard modules instead.

62

	 II.	 Visual Basic

	 A proprietary product called DeLux (http://www.deluxsoftware.com/) can be used to convert Visual

Basic code to Kylix (see item IV) and can be run under GNU/Linux natively. Netproject (http://

www.netproject.com) have not been able to test this product. Microsoft’s development tools can

convert Visual Basic code to .NET and produce CIL code. The Mono OSS project allows this code to

be run under GNU/Linux. Mono is currently being developed very rapidly and any given application

may or may not work depending on the way it interacts with libraries such as the screen display.

	 III.	C#

	 This is increasingly supported under GNU/Linux, and Novell (through its recently acquired Ximian)

have produced a compiler as part of the Mono project, adding C# bindings to crucial components

of the Gnome Desktop. The Mono project includes an interpreter that allows CIL code produced

by proprietary development tools to be run on GNU/Linux unchanged. The Mono project and the

use of the .NET development framework is a very lively area of OSS at the moment and the position

changes very rapidly.

	 IV.	 Pascal and Delphi

	 Pascal as a free-standing language is little used these days, but it is the essential coding component

of Borland’s Delphi rapid development tool. Borland have a native GNU/Linux equivalent of Delphi

that goes by the name of Kylix. Kylix 2 and Delphi 6 are stated to use compatible code syntax and

have identical support environments.

	 V.	 C and C++

	 Programs written to ANSI standards should recompile and run as long as the underlying system

libraries used are compatible. For instance programs written specifically for Windows will not in

general compile and run correctly under GNU/Linux due to the very different set of calls to both the

operating system and run-time libraries such as the windowing system. This mismatch can often be

dealt with by compiling the code with Winelib, a part of the Wine project.

P A R T C

6	 CONCLUSION

	 The Malaysian Government Interoperability Framework for OSS is constructed to be a “live” document,

providing IT managers within the public sector examples, guidelines and recommendations for the

adoption of, and migration to, OSS within their organisations. The constantly changing nature of

technology and implementation methodologies mean that this document cannot possibly be exhaustive

nor definitive.

	 However, it does serve as a useful reference in fulfilling the objectives of this document, which is

primarily to ensure the interoperability and co-existence of new and legacy systems.

	

	 Throughout this document, the importance of open standards have been repeatedly emphasised, simply

because the adherence to these standards, do more than any other measures that can be taken to

ensure interoperability.

7	 REFERENCES

	 i.	 The European Commission Interchange of Data between Administration (IDA) Open Source

Migration Guidelines v1.0:

 		 http://www.netproject.com/docs/migoss/v1.0

	 ii.	 Standards, Policies and Guidelines – Malaysian Government Interoperability Framework (MyGIF)

v1.0, Malaysian Administrative Modernisation and Management Planning Unit, August 2003:

		 http://www.mampu.gov.my/mampu/bi/program/ict/ISPlan/ispdoc/Interoperability%20Framework.pdf

iii.	 The United Kingdom e-Government Interoperability Framework v6.0, The Cabinet Office, e-

Government Unit, Technology Policy Team, Interoperability Policy Advisor, April 2004:

		 http://www.govtalk.gov.uk/schemasstandards/egif.asp

65

66

8	 ABBREVIATIONS AND ACRONYMS

	 The abbreviations and acronyms throughout this document are similar to the ones detailed in MyGIF,

with some expansion as given below:

66

Abbreviation/Acronym Expension

Multimedia

Codec

Short encoder/decoder, this term is used to describe the process to encoding or decoding digital data
(usually video, images or audio) from one form to another. For example, digital images are encoded
into the JPEG format for storage and decoded from the format for display onto the screen. Encoding
involves compressing the data and decoding, decompressing.

Ogg Vorbis
It is an audio compression format which is patent free and open source. It was started after litigation
possibilities were raised in using the popular MP3 format which had patents held by the Fraunhofer
Institute. Ogg is the container format and Vorbis is the compression scheme.

MP3 MPEG-1 Audio Layer-3

Linux

RPM
RPM Package Manager (formerly known as Redhat Package Manager) is a package management
system, primarily for Linux which installs, updates, uninstalls, verifies and queries software. It is used by
many Linux distributions for this very purpose.

DPKG
DPKG is the base of the Debian Package Management System which is similar to RPM. In fact, RPM
was originally based on DPKG, though simplified.

APT
Advanced Packaging Tool – a high-level package management system which manages the retrieval,
configuration and installation of software packages. It is used mainly for DPKG-based packages but
has been expanded to handle RPM-based ones as well.

TGZ

File extension which means that a collection of files within a software package have been inserted into
a Tar archive and compressed with gzip – the TGZ files are commonly referred to as gzipped tarballs. It
is also the package management system used in some Linux distributions.
As a package management system, though, it is not as advanced as others.

emerge
A package management system used by primarily by the Gentoo Linux distribution. It works similarly
like APT, in that is obtains the source code for a package and then configures and installs it.

tar An archive program. Tar stands for “tape archive”.

Table 8.1: Abbreviations & Acronyms

	MyGIFOSS1.PDF.pdf

